Advertisement

Nano Research

, Volume 6, Issue 7, pp 461–468 | Cite as

Optical haze of transparent and conductive silver nanowire films

  • Colin Preston
  • Yunlu Xu
  • Xiaogang Han
  • Jeremy N. Munday
  • Liangbing HuEmail author
Research Article

Abstract

Contemporary nanostructured transparent electrodes for use in solar cells require high transmittance and high conductivity, dictating nanostructures with high aspect ratios. Optical haze is an equally important yet unstudied parameter in transparent electrodes for solar cells that is also determined by the geometry of the nanostructures that compose the electrode. In this work, the effect of the silver nanowire diameter on the optical haze values in the visible spectrum was investigated using films composed of wires with either small diameters (∼60 nm) or large diameters (∼150 nm). Finite difference time domain (FDTD) simulations and experimental transmittance data confirm that smaller diameter nanowires form higher performing transparent conducting electrode (TCE) films according to the current figure of merit. While maintaining near constant transmittance and conductivity for each film, however, it was observed experimentally that films composed of silver nanowires with larger diameters have a higher haze factor than films with smaller diameters. This confirms the FDTD simulations of the haze factor for single nanowires with similarly large and small diameters. This is the first record of haze properties for Ag NWs that have been simulated or experimentally measured, and also the first evidence that the current figure of merit for TCEs is insufficient to evaluate their performance in solar cell devices.

Keywords

solar cell transparent conducting electrode silver nanowire haze factor light trapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_323_MOESM1_ESM.pdf (420 kb)
Supplementary material, approximately 419 KB.

References

  1. [1]
    Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583–585.CrossRefGoogle Scholar
  2. [2]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nimalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.CrossRefGoogle Scholar
  3. [3]
    Kumar, A.; Zhou, C. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11–14.CrossRefGoogle Scholar
  4. [4]
    Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.CrossRefGoogle Scholar
  5. [5]
    Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefGoogle Scholar
  6. [6]
    Zhang, M.; Fang, S.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.CrossRefGoogle Scholar
  7. [7]
    Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.CrossRefGoogle Scholar
  8. [8]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  9. [9]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  10. [10]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  11. [11]
    Liu, C.-H.; Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 2011, 6, 75.CrossRefGoogle Scholar
  12. [12]
    Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano. Res. 2010, 3, 564–573.CrossRefGoogle Scholar
  13. [13]
    Van de Groep, J.; Spinelli, P.; Polman, A. Transparent conducting silver nanowire networks. Nano Lett. 2012, 12, 3138–3144.CrossRefGoogle Scholar
  14. [14]
    Wu, H.; Hu, L. B.; Rowell, M. W.; Kong, D. S.; Cha, J. J.; McDonough, J. R.; Zhu, J.; Yang, Y. A.; McGehee, M. D.; Cui, Y. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 2010, 10, 4242–4248.CrossRefGoogle Scholar
  15. [15]
    Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56.CrossRefGoogle Scholar
  16. [16]
    Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.CrossRefGoogle Scholar
  17. [17]
    Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L. B.; Gruner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.CrossRefGoogle Scholar
  18. [18]
    Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.CrossRefGoogle Scholar
  19. [19]
    Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.CrossRefGoogle Scholar
  20. [20]
    Kang, M. G.; Kim, M. S.; Kim, J. S.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.CrossRefGoogle Scholar
  21. [21]
    Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 24, 3326–3332.CrossRefGoogle Scholar
  22. [22]
    Sun, Y. G. Silver nanowires-unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642.CrossRefGoogle Scholar
  23. [23]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.CrossRefGoogle Scholar
  24. [24]
    Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.Google Scholar
  25. [25]
    Yang, Y.; Wang, L.; Yan, H.; Jin, S.; Marks, T. J. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes. Appl. Phys. Lett. 2006, 89, 051116.CrossRefGoogle Scholar
  26. [26]
    Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638–2642.CrossRefGoogle Scholar
  27. [27]
    Van de Hulst, H. C. Light Scattering by Small Particles; John Wiley & Sons, Inc.: New York, 1957.Google Scholar
  28. [28]
    Luk’yanchuk, B. S.; Tribelsky, M. I.; Ternovsky, V.; Wang, Z. B.; Hong, M. H.; Shi, L. P.; Chong, T. C. Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials. J. Opt. A: Pure Appl. Opt. 2007, 9, S294–S300.CrossRefGoogle Scholar
  29. [29]
    Oliva, J. M.; Gray, S. K. A computational study of the interaction of light with silver nanowires of different eccentricity. Chem. Phys. Lett. 2006, 427, 383–389.CrossRefGoogle Scholar
  30. [30]
    Giannini, V.; Sanchez-Gil, J. A. Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form. J. Opt. Soc. Am. A 2007, 24, 2822–2830.CrossRefGoogle Scholar
  31. [31]
    Catrysse, P. B.; Fan, S. H. Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 2010, 10, 2944–2949.CrossRefGoogle Scholar
  32. [32]
    Spinelli, P.; Hebbink, M.; de Waele, R.; Black, L.; Lenzmann, F.; Polman, A. Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 2011, 11, 1760–1765.CrossRefGoogle Scholar
  33. [33]
    De, S.; King, P. J.; Lyons, P. E.; Khan, U.; Coleman, J. N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 2010, 4, 7064–7072.CrossRefGoogle Scholar
  34. [34]
    Critchley, K.; Khanal, B. P.; Górzny, M. L.; Vigderman, L.; Evans, S. D.; Zubarev, E. R.; Kotov, N. A. Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. Adv. Mater. 2010, 22, 2338–2342.CrossRefGoogle Scholar
  35. [35]
    Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q.; One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Colin Preston
    • 1
  • Yunlu Xu
    • 2
    • 3
  • Xiaogang Han
    • 1
  • Jeremy N. Munday
    • 2
    • 3
  • Liangbing Hu
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of Maryland College ParkCollege ParkUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.The Institute for Research in Electronics and Applied PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations