Nano Research

, Volume 6, Issue 5, pp 373–380 | Cite as

Spin valve effect of NiFe/graphene/NiFe junctions

  • Muhammad Zahir Iqbal
  • Muhammad Waqas Iqbal
  • Jae Hong Lee
  • Yong Seung Kim
  • Seung-Hyun Chun
  • Jonghwa Eom
Research Article


When spins are injected through graphene layers from a transition metal ferromagnet, high spin polarization can be achieved. When detected by another ferromagnet, the spin-polarized current makes high- and low-resistance states in a ferromagnet/graphene/ferromagnet junction. Here, we report manifest spin valve effects from room temperature to 10 K in junctions comprising NiFe electrodes and an interlayer made of double-layer or single-layer graphene grown by chemical vapor deposition. We have found that the spin valve effect is stronger with double-layer graphene than with single-layer graphene. The ratio of relative magnetoresistance increases from 0.09% at room temperature to 0.14% at 10 K for single-layer graphene and from 0.27% at room temperature to 0.48% at 10 K for double-layer graphene. The spin valve effect is perceived to retain the spin-polarized transport in the vertical direction and the hysteretic nature of magnetoresistance provides the basic functionality of a memory device. We have also found that the junction resistance decreases monotonically as temperature is lowered and the current-voltage characteristics show linear behaviour. These results revealed that a graphene interlayer works not as a tunnel barrier but rather as a conducting thin film between two NiFe electrodes.


graphene spin valve magnetic junction magnetoresistance spintronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.CrossRefGoogle Scholar
  2. [2]
    Tran, T. L. A.; Le, T. Q.; Sanderink, J. G. M.; van der Wiel, W. G.; de Jong, M. P. The multistep tunneling analogue of conductivity mismatch in organic spin valves. Adv. Funct. Mater. 2012, 22, 1180–1189.CrossRefGoogle Scholar
  3. [3]
    Kirwan, D. F.; de Menezes, V. M.; Rocha, C. G.; Costa, A. T.; Muniz, R. B.; Fagan, S. B.; Ferreira, M. S. Enhanced spin-valve effect in magnetically doped carbon nanotubes. Carbon 2009, 47, 2533–2537.CrossRefGoogle Scholar
  4. [4]
    Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.CrossRefGoogle Scholar
  5. [5]
    Karpan, V. M.; Khomyakov, P. A.; Starikov, A. A.; Giovannetti, G.; Zwierzycki, M.; Talanana, M.; Brocks, G.; van den Brink, J.; Kelly, P. J. Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys. Rev. B 2008, 78, 195419.CrossRefGoogle Scholar
  6. [6]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  7. [7]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefGoogle Scholar
  8. [8]
    Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412.CrossRefGoogle Scholar
  9. [9]
    Nishioka, M.; Goldman, A. M. Spin transport through multilayer graphene. Appl. Phys. Lett. 2007, 90, 252505.CrossRefGoogle Scholar
  10. [10]
    Cho, S. J.; Chen, Y. F.; Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 2007, 91, 123105.CrossRefGoogle Scholar
  11. [11]
    Goto, H.; Kanda, A.; Sato, T.; Tanaka, S.; Ootuka, Y.; Odaka, S.; Miyazaki, H. T.; Tsukagoshi, K.; Aoyagi, Y. Gate control of spin transport in multilayer graphene. Appl. Phys. Lett. 2008, 92, 212110.CrossRefGoogle Scholar
  12. [12]
    Wang, W. H.; Pi, K.; Li, Y.; Chiang, Y. F.; Wei, P.; Shi, J.; Kawakami, R. K. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 2008, 77, 020402.CrossRefGoogle Scholar
  13. [13]
    Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C. B.; Epstein, A. J. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 2010, 9, 638–642.CrossRefGoogle Scholar
  14. [14]
    Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 2011, 10, 39–44.CrossRefGoogle Scholar
  15. [15]
    Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 2012, 11, 289–293.CrossRefGoogle Scholar
  16. [16]
    Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.CrossRefGoogle Scholar
  17. [17]
    Cobas, E.; Friedman, A. L.; van’t Erve, O. M. J.; Robinson, J. T.; Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 2012, 12, 3000–3004.CrossRefGoogle Scholar
  18. [18]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  19. [19]
    Xue, Y. Z.; Wu, B.; Guo, Y. L.; Huang, L. P.; Jiang, L.; Chen, J. Y.; Geng, D. C.; Liu, Y. Q.; Hu, W. P.; Yu, G. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208–1214.CrossRefGoogle Scholar
  20. [20]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  21. [21]
    Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.CrossRefGoogle Scholar
  22. [22]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar
  23. [23]
    Mohiuddin, T. M. G.; Hill, E. W.; Elias, D.; Zhukov, A. A.; Novoselov, K. S.; Geim, A. K. Graphene in multilayered CPP spin valves. IEEE T. Magn. 2008, 44, 2624–2627.CrossRefGoogle Scholar
  24. [24]
    Akerman, J. J.; Roshchin, I. V.; Slaughter, J. M.; Dave, R. W.; Schuller, I. K. Origin of temperature dependence in tunneling magnetoresistance. Europhys. Lett. 2003, 63, 104–110.CrossRefGoogle Scholar
  25. [25]
    Shang, C. H.; Nowak, J.; Jansen, R.; Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 1998, 58, R2917–R2920.CrossRefGoogle Scholar
  26. [26]
    Parkin, S.; Kaiser, C.; Panchula, A.; Rice, P.; Huges, B.; Samant, M.; Yang, S. H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Muhammad Zahir Iqbal
    • 1
  • Muhammad Waqas Iqbal
    • 1
  • Jae Hong Lee
    • 1
  • Yong Seung Kim
    • 1
  • Seung-Hyun Chun
    • 1
  • Jonghwa Eom
    • 1
  1. 1.Department of Physics and Graphene Research InstituteSejong UniversitySeoulKorea

Personalised recommendations