Nano Research

, Volume 6, Issue 5, pp 373–380 | Cite as

Spin valve effect of NiFe/graphene/NiFe junctions

  • Muhammad Zahir Iqbal
  • Muhammad Waqas Iqbal
  • Jae Hong Lee
  • Yong Seung Kim
  • Seung-Hyun Chun
  • Jonghwa Eom
Research Article

Abstract

When spins are injected through graphene layers from a transition metal ferromagnet, high spin polarization can be achieved. When detected by another ferromagnet, the spin-polarized current makes high- and low-resistance states in a ferromagnet/graphene/ferromagnet junction. Here, we report manifest spin valve effects from room temperature to 10 K in junctions comprising NiFe electrodes and an interlayer made of double-layer or single-layer graphene grown by chemical vapor deposition. We have found that the spin valve effect is stronger with double-layer graphene than with single-layer graphene. The ratio of relative magnetoresistance increases from 0.09% at room temperature to 0.14% at 10 K for single-layer graphene and from 0.27% at room temperature to 0.48% at 10 K for double-layer graphene. The spin valve effect is perceived to retain the spin-polarized transport in the vertical direction and the hysteretic nature of magnetoresistance provides the basic functionality of a memory device. We have also found that the junction resistance decreases monotonically as temperature is lowered and the current-voltage characteristics show linear behaviour. These results revealed that a graphene interlayer works not as a tunnel barrier but rather as a conducting thin film between two NiFe electrodes.

Keywords

graphene spin valve magnetic junction magnetoresistance spintronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.CrossRefGoogle Scholar
  2. [2]
    Tran, T. L. A.; Le, T. Q.; Sanderink, J. G. M.; van der Wiel, W. G.; de Jong, M. P. The multistep tunneling analogue of conductivity mismatch in organic spin valves. Adv. Funct. Mater. 2012, 22, 1180–1189.CrossRefGoogle Scholar
  3. [3]
    Kirwan, D. F.; de Menezes, V. M.; Rocha, C. G.; Costa, A. T.; Muniz, R. B.; Fagan, S. B.; Ferreira, M. S. Enhanced spin-valve effect in magnetically doped carbon nanotubes. Carbon 2009, 47, 2533–2537.CrossRefGoogle Scholar
  4. [4]
    Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.CrossRefGoogle Scholar
  5. [5]
    Karpan, V. M.; Khomyakov, P. A.; Starikov, A. A.; Giovannetti, G.; Zwierzycki, M.; Talanana, M.; Brocks, G.; van den Brink, J.; Kelly, P. J. Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys. Rev. B 2008, 78, 195419.CrossRefGoogle Scholar
  6. [6]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  7. [7]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefGoogle Scholar
  8. [8]
    Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412.CrossRefGoogle Scholar
  9. [9]
    Nishioka, M.; Goldman, A. M. Spin transport through multilayer graphene. Appl. Phys. Lett. 2007, 90, 252505.CrossRefGoogle Scholar
  10. [10]
    Cho, S. J.; Chen, Y. F.; Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 2007, 91, 123105.CrossRefGoogle Scholar
  11. [11]
    Goto, H.; Kanda, A.; Sato, T.; Tanaka, S.; Ootuka, Y.; Odaka, S.; Miyazaki, H. T.; Tsukagoshi, K.; Aoyagi, Y. Gate control of spin transport in multilayer graphene. Appl. Phys. Lett. 2008, 92, 212110.CrossRefGoogle Scholar
  12. [12]
    Wang, W. H.; Pi, K.; Li, Y.; Chiang, Y. F.; Wei, P.; Shi, J.; Kawakami, R. K. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 2008, 77, 020402.CrossRefGoogle Scholar
  13. [13]
    Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C. B.; Epstein, A. J. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 2010, 9, 638–642.CrossRefGoogle Scholar
  14. [14]
    Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 2011, 10, 39–44.CrossRefGoogle Scholar
  15. [15]
    Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 2012, 11, 289–293.CrossRefGoogle Scholar
  16. [16]
    Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.CrossRefGoogle Scholar
  17. [17]
    Cobas, E.; Friedman, A. L.; van’t Erve, O. M. J.; Robinson, J. T.; Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 2012, 12, 3000–3004.CrossRefGoogle Scholar
  18. [18]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  19. [19]
    Xue, Y. Z.; Wu, B.; Guo, Y. L.; Huang, L. P.; Jiang, L.; Chen, J. Y.; Geng, D. C.; Liu, Y. Q.; Hu, W. P.; Yu, G. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208–1214.CrossRefGoogle Scholar
  20. [20]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  21. [21]
    Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.CrossRefGoogle Scholar
  22. [22]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar
  23. [23]
    Mohiuddin, T. M. G.; Hill, E. W.; Elias, D.; Zhukov, A. A.; Novoselov, K. S.; Geim, A. K. Graphene in multilayered CPP spin valves. IEEE T. Magn. 2008, 44, 2624–2627.CrossRefGoogle Scholar
  24. [24]
    Akerman, J. J.; Roshchin, I. V.; Slaughter, J. M.; Dave, R. W.; Schuller, I. K. Origin of temperature dependence in tunneling magnetoresistance. Europhys. Lett. 2003, 63, 104–110.CrossRefGoogle Scholar
  25. [25]
    Shang, C. H.; Nowak, J.; Jansen, R.; Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 1998, 58, R2917–R2920.CrossRefGoogle Scholar
  26. [26]
    Parkin, S.; Kaiser, C.; Panchula, A.; Rice, P.; Huges, B.; Samant, M.; Yang, S. H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Muhammad Zahir Iqbal
    • 1
  • Muhammad Waqas Iqbal
    • 1
  • Jae Hong Lee
    • 1
  • Yong Seung Kim
    • 1
  • Seung-Hyun Chun
    • 1
  • Jonghwa Eom
    • 1
  1. 1.Department of Physics and Graphene Research InstituteSejong UniversitySeoulKorea

Personalised recommendations