Nano Research

, Volume 6, Issue 5, pp 365–372 | Cite as

Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries

  • Jae-Geun Kim
  • Dongqi Shi
  • Min-Sik Park
  • Goojin Jeong
  • Yoon-Uk Heo
  • Minsu Seo
  • Young-Jun Kim
  • Jung Ho Kim
  • Shi Xue Dou
Research Article


The morphology and electronic structure of a Li4Ti5O12 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5O12 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5O12 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5O12 nanofibers, due to the Ag nanoparticles (<5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries.


spinel Li4Ti5O12 (LTO) electrospinning silver doping lithium rechargeable batteries 1D nanostructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jeong, G.; Kim, Y. U.; Kim, H.; Kim, Y. J.; Sohn, H. J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002.CrossRefGoogle Scholar
  2. [2]
    Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.CrossRefGoogle Scholar
  3. [3]
    Colbow, K. M.; Dahn J. R.; Haering, R. R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4. J. Power Sources 1989, 26, 397–402.CrossRefGoogle Scholar
  4. [4]
    Ferg, E.; Gummow, R. J.; de Kock, A.; Thackeray, M. M. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 1994, 141, L147–L150.CrossRefGoogle Scholar
  5. [5]
    Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 1995, 142, 1431–1435.CrossRefGoogle Scholar
  6. [6]
    Kavan, L.; Gratzel, M. Facile synthesis of nanocrystalline Li4Ti5O12(spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett. 2002, 5, A39–A42.CrossRefGoogle Scholar
  7. [7]
    Lu, X.; Zhao, L.; He, X.; Xiao, R.; Gu, L.; Hu, Y.-S.; Li, H.; Wang, Z.; Duan, X.; Chen, L. et al. Lithium storage in Li4Ti5O12 spinel: The full static picture from electron microscopy. Adv. Mater. 2012, 24, 3233–3268.CrossRefGoogle Scholar
  8. [8]
    Pan, H.; Zhao, L.; Hu, Y.-S.; Li, H.; Chen, L. Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. ChemSusChem 2012, 5, 526–529.CrossRefGoogle Scholar
  9. [9]
    Pan, H.-L.; Hu, Y.-S.; Li, H.; Chen, L.-Q. Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12. Chin. Phys. B 2011, 20, 118202.CrossRefGoogle Scholar
  10. [10]
    Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D. W.; Vissers, D. R.; Thackeray, M. M. Development of a high-power lithium-ion battery. J. Power Sources 1999, 81–82, 902–905.CrossRefGoogle Scholar
  11. [11]
    Ouyang, C. Y.; Zhong, Z. Y.; Lei, M. S. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun. 2007, 9, 1107–1112.CrossRefGoogle Scholar
  12. [12]
    Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.CrossRefGoogle Scholar
  13. [13]
    Han, H.; Song, T.; Bae, J. Y.; Nazar, L. F.; Kim, H.; Paik, U. Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ. Sci. 2011, 4, 4532–4536.CrossRefGoogle Scholar
  14. [14]
    Park, K. S.; Benayad, A.; Kang, D. J.; Doo, S. G. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J. Am. Chem. Soc. 2008, 130, 14930–14931.CrossRefGoogle Scholar
  15. [15]
    Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.CrossRefGoogle Scholar
  16. [16]
    Nugroho, A.; Chang, W.; Kim, S. J.; Chung, K. Y.; Kim, J. Superior high rate performance of core-shell Li4Ti5O12/carbon nanocomposite synthesized by a supercritical alcohol approach. RSC Adv. 2012, 2, 10805–10808.CrossRefGoogle Scholar
  17. [17]
    Lee, S.; Cho, Y.; Song, H.-K.; Lee, K. T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Edit. 2012, 51, 8748–8752.CrossRefGoogle Scholar
  18. [18]
    Cai, R.; Jiang, S. M.; Yu, X.; Zhao, B. T.; Wang, H. T.; Shao, Z. P. A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature. J. Mater. Chem. 2012, 22, 8013–8021.CrossRefGoogle Scholar
  19. [19]
    Song, H.; Yun, S.-W.; Chun, H.-H.; Kim, M.-G.; Chung, K. Y.; Kim, H. S.; Cho, B.-W.; Kim, Y.-T. Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ. Sci. 2012, 5, 9903–9913.CrossRefGoogle Scholar
  20. [20]
    Gu, F.; Chen, G.; Wang, Z. Synthesis and electrochemical performances of Li4Ti4.95Zr0.05O12/C as anode material for lithium-ion batteries. J. Solid State Electrochem. 2012, 16, 375–382.CrossRefGoogle Scholar
  21. [21]
    Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Inter. 2010, 2, 2046–2052.CrossRefGoogle Scholar
  22. [22]
    Du, G.; Sharma, N.; Peterson, V. K.; Kimpton, J. A.; Jia, D.; Guo, Z. Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: Synchrotron X-ray and in situ neutron diffraction studies. Adv. Funct. Mater. 2011, 21, 3990–3997.CrossRefGoogle Scholar
  23. [23]
    Guo, Y.-G.; Hu, Y.-S.; Sigle, W.; Maier, J. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 2007, 19, 2087–2091.CrossRefGoogle Scholar
  24. [24]
    Kim, J.-G.; Shi, D.; Kong, K.-J.; Heo, Y.-U.; Kim, J. H.; Jo, M. R.; Lee, Y. C.; Kang, Y.-M.; Dou, S. X. Structurally and electronically designed TiO2Nx nanofibers for lithium rechargeable batteries. ACS Appl. Mater. Interfaces 2013, 5, 691–696.CrossRefGoogle Scholar
  25. [25]
    Shim, H. W.; Lee, D. K.; Cho, I. S.; Hong, K. S.; Kim, D. W. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries. Nanotechnology 2010, 21, 255706.CrossRefGoogle Scholar
  26. [26]
    Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimentional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  27. [27]
    Lu, X.; Wang, C.; Wei, Y. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small 2009, 5, 2349–2370.CrossRefGoogle Scholar
  28. [28]
    Jo, M. R.; Jung, Y. S.; Kang, Y.-M. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Nanoscale, 2012, 4, 6870–6875CrossRefGoogle Scholar
  29. [29]
    Li, D.; Xia, Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003, 3, 555–560.CrossRefGoogle Scholar
  30. [30]
    Li, D.; Xia, Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 2004, 4, 933–938.CrossRefGoogle Scholar
  31. [31]
    Yu, Y.; Gu, L.; Zhu, C.; Aken, P. A.; Maier, J. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: Preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J. Am. Chem. Soc. 2009, 131, 15984–15985.CrossRefGoogle Scholar
  32. [32]
    Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D. J.; Roziere, J. Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 2011, 4, 4761–4785.CrossRefGoogle Scholar
  33. [33]
    Asokan, K.; Park, J. Y.; Choi, S.; Chang, C.; Kim, S. S. Stabilization of the anatase phase of Ti1−xSnxO2 (x < 0.5) nanofibers. Nano Res. 2010, 3, 256–263.CrossRefGoogle Scholar
  34. [34]
    Kim, J.; Cho, J. Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochen Solid-State Lett. 2007, 10, A81–A84.CrossRefGoogle Scholar
  35. [35]
    Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I.; Vicente, C. P. Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem. Mater. 2004, 16, 5721–5725.CrossRefGoogle Scholar
  36. [36]
    Wan, Z.; Cai, R.; Jiang, S.; Shao, Z. Nitrogen- and TiN-modified Li4Ti5O12: One-step synthesis and electrochemical performance optimization. J. Mater. Chem. 2012, 22, 17773–17781.CrossRefGoogle Scholar
  37. [37]
    Huang, S.; Wen, Z.; Zhu, X.; Gu, Z. Preparation and electrochemical performance of Ag doped Li4Ti5O12. Electrochem. Commun. 2004, 6, 1093–1097.CrossRefGoogle Scholar
  38. [38]
    Liu, Z.; Zhang, N.; Wang, Z.; Sun, K. Highly dispersed Ag nanoparticles (<10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J. Power Sources 2012, 205, 479–482.CrossRefGoogle Scholar
  39. [39]
    Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3, 147–152.CrossRefGoogle Scholar
  40. [40]
    Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.CrossRefGoogle Scholar
  41. [41]
    Jo, M. R.; Nam, K. M.; Lee, Y.; Song, K.; Park, J. T.; Kang, Y.-M. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries. Chem. Commun. 2011, 47, 11474–11476.CrossRefGoogle Scholar
  42. [42]
    Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.CrossRefGoogle Scholar
  43. [43]
    Ma, Y.; Ji, G.; Ding, B.; Lee, J. Y. Facile solvothermal synthesis of anatase TiO2 microspheres with adjustable mesoporosity for the reversible storage of lithium ions. J. Mater. Chem. 2012, 22, 24380–24385.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jae-Geun Kim
    • 1
  • Dongqi Shi
    • 1
  • Min-Sik Park
    • 2
  • Goojin Jeong
    • 2
  • Yoon-Uk Heo
    • 3
  • Minsu Seo
    • 2
  • Young-Jun Kim
    • 2
  • Jung Ho Kim
    • 1
  • Shi Xue Dou
    • 1
  1. 1.Institute for Superconducting and Electronic MaterialsUniversity of WollongongNorth WollongongAustralia
  2. 2.Advanced Batteries Research CenterKorea Electronics Technology InstituteSeongnamRepublic of Korea
  3. 3.Research Facility Center, Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations