Nano Research

, Volume 6, Issue 5, pp 356–364 | Cite as

Redox-sensitive colorimetric polyaniline nanoprobes synthesized by a solvent-shift process

  • Jihye Choi
  • Yoochan Hong
  • Eugene Lee
  • Myeong-Hoon Kim
  • Dae Sung Yoon
  • Jinsuck Suh
  • Yongmin Huh
  • Seungjoo Haam
  • Jaemoon Yang
Research Article

Abstract

We have synthesized water-stable polyaniline nanoparticles coated with triarmed polyethylene glycol chains using a solvent-shift method and confirmed their colloidal size and aqueous solubility. Furthermore, we have demonstrated that the polyaniline nanoparticles can be doped with biological dopants to produce distinct color changes allowing the detection of live cancer cells.

Keywords

polyaniline solvent-shifting cancer colorimetric nanoprobe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_312_MOESM1_ESM.pdf (495 kb)
Supplementary material, approximately 494 KB.

References

  1. [1]
    Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Flexible light-emitting diodes made from soluble conducting polymers. Nature 1992, 357, 477–479.CrossRefGoogle Scholar
  2. [2]
    Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K. J.; Samuelson, L. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 1998, 121, 71–78.CrossRefGoogle Scholar
  3. [3]
    Wang, Y.; Wang, X.; Li, J.; Mo, Z.; Zhao, X.; Jing, X.; Wang, F. Conductive polyaniline/silica hybrids from sol-gel process. Adv. Mater. 2001, 13, 1582–1585.CrossRefGoogle Scholar
  4. [4]
    Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135–145.CrossRefGoogle Scholar
  5. [5]
    D’Arcy, J. M.; Tran, H. D.; Tung, V. C.; Tucker-Schwartz, A. K.; Wong, R. P.; Yang, Y.; Kaner, R. B. Versatile solution for growing thin films of conducting polymers. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 19673–19678.CrossRefGoogle Scholar
  6. [6]
    Kamikawa, T. L.; Mikolajczyk, M. G.; Kennedy, M.; Zhang, P.; Wang, W.; Scott, D. E.; Alocilja, E. C. Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains. Biosens. Bioelectron. 2010, 26, 1346–1352.CrossRefGoogle Scholar
  7. [7]
    Gowda, S. R.; Leela Mohana Reddy, A.; Zhan, X. B.; Ajayan, P. M. Building energy storage device on a single nanowire. Nano Lett. 2011, 11, 3329–3333.CrossRefGoogle Scholar
  8. [8]
    Ma, Y. F.; Zhang, J. M.; Zhang, G. J.; He, H. X. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126, 7097–7101.CrossRefGoogle Scholar
  9. [9]
    Sun, Q. H.; Bi, W.; Fuller, T. F.; Ding, Y.; Deng, Y. Fabrication of aligned polyaniline nanofiber array via a facile wet chemical process. Macromol. Rapid Commun. 2009, 30, 1027–1032.CrossRefGoogle Scholar
  10. [10]
    Anilkumar, P.; Jayakannan, M. Hydroxyl-functionalized polyaniline nanospheres: Tracing molecular interactions at the nanosurface via vitamin C sensing. Langmuir 2008, 24, 9754–9762.CrossRefGoogle Scholar
  11. [11]
    Jin, E.; Wang, X.; Liu, N.; Zhang, W. J. Self-assembled microspheres of glucose-containing polyaniline by alkali-guided method. Mater. Lett. 2007, 61, 4959–4962.CrossRefGoogle Scholar
  12. [12]
    Horn, D.; Rieger, J. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. Ed. 2001, 40, 4330–4361.CrossRefGoogle Scholar
  13. [13]
    Barthet, C.; Armes, S. P.; Lascelles, S. F.; Luk, S. Y.; Stanley, H. M. E. Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes. Langmuir 1998, 14, 2032–2041.CrossRefGoogle Scholar
  14. [14]
    Riede, A.; Helmstedt, M.; Riede, V.; Stejskal, J. Polyaniline dispersions. 9. dynamic light scattering study of particle formation using different stabilizers. Langmuir 1998, 14, 6767–6771.CrossRefGoogle Scholar
  15. [15]
    Zhang, L.; Wan, M. Self-assembly of polyaniline-from nanotubes to hollow microspheres. Adv. Funct. Mater. 2003, 13, 815–820.CrossRefGoogle Scholar
  16. [16]
    Neelgund, G. M.; Oki, A. A facile method for the synthesis of polyaniline nanospheres and the effect of doping on their electrical conductivity. Polym. Int. 2011, 60, 1291–1295.Google Scholar
  17. [17]
    Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 2011, 50, 441–444.CrossRefGoogle Scholar
  18. [18]
    Bilati, U.; Allémann, E.; Doelker, E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 2005, 24, 67–75.CrossRefGoogle Scholar
  19. [19]
    Aubry, J.; Ganachaud, F.; Cohen Addad, J. P.; Cabane, B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir 2009, 25, 1970–1979.CrossRefGoogle Scholar
  20. [20]
    Yang, J.; Lee, E. S.; Noh, M. Y.; Koh, S. H.; Lim, E. K.; Yoo, A. R.; Lee, K.; Suh, J. S.; Kim, S. H.; Haam, S. et al. Ambidextrous magnetic nanovectors for synchronous gene transfection and labeling of human MSCs. Biomaterials 2011, 32, 6174–6182.Google Scholar
  21. [21]
    Huang, W. S.; MacDiarmid, A. G. Optical properties of polyaniline. Polymer 1993, 34, 1833–1845.CrossRefGoogle Scholar
  22. [22]
    Huang, J. X.; Kaner, R. B. The intrinsic nanofibrillar morphology of polyaniline. Chem. Commun. 2006, 367–376.Google Scholar
  23. [23]
    Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.CrossRefGoogle Scholar
  24. [24]
    Cairns, R. A.; Harris, I. S.; Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95.CrossRefGoogle Scholar
  25. [25]
    Stubbs, M.; McSheehy, P. M. J.; Griffiths, J. R.; Bashford, C. L. Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 2000, 6, 15–19.CrossRefGoogle Scholar
  26. [26]
    Tao, S.; Hong, B.; Kerong, Z. An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+. Spectrochim. Acta A 2007, 66, 1364–1368.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jihye Choi
    • 1
  • Yoochan Hong
    • 2
  • Eugene Lee
    • 3
  • Myeong-Hoon Kim
    • 1
  • Dae Sung Yoon
    • 2
  • Jinsuck Suh
    • 3
    • 4
    • 5
  • Yongmin Huh
    • 3
    • 4
    • 5
  • Seungjoo Haam
    • 1
    • 4
  • Jaemoon Yang
    • 3
    • 4
    • 6
  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.Department of Biomedical EngineeringYonsei UniversityWonjuRepublic of Korea
  3. 3.Department of Radiology, College of MedicineYonsei UniversitySeoulRepublic of Korea
  4. 4.YUHS-KRIBB Medical Convergence Research InstituteSeoulRepublic of Korea
  5. 5.Severance Biomedical Science Institute (SBSI)SeoulRepublic of Korea
  6. 6.Severance Integrative Research Institute for Cerebral and Cardiovascular DiseasesYonsei University Health SystemSeoulRepublic of Korea

Personalised recommendations