Nano Research

, Volume 6, Issue 5, pp 348–355 | Cite as

Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes

  • Chan Woo Lee
  • Seung-Deok Seo
  • Dong Wook Kim
  • Sangbaek Park
  • Kyoungsuk Jin
  • Dong-Wan Kim
  • Kug Sun Hong
Research Article


We report the direct synthesis of ZnCo2O4 and ZnO/ZnCo2O4 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierarchical self-supported nanostructures are composed of one-dimensional (1D) ZnCo2O4 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo2O4 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo2O4 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (∼900 mA·h·g−1 at a rate of 45 mA·h·g−1) for Li ion battery electrodes.


ZnCo2O4 submicron rods ZnO nanosheets hierarchical heterostructure ammonia-evaporation-induced method Li ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_311_MOESM1_ESM.pdf (724 kb)
Supplementary material, approximately 724 KB.


  1. [1]
    Besenhard, J. O.; Yang, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 1997, 68, 87–90.CrossRefGoogle Scholar
  2. [2]
    Wen, C. J.; Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 1981, 37, 271–278.CrossRefGoogle Scholar
  3. [3]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  4. [4]
    Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.CrossRefGoogle Scholar
  5. [5]
    Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.CrossRefGoogle Scholar
  6. [6]
    Wang, L.; Cheng, W.; Gong, H.; Wang, C.; Wang, D.; Tang, K.; Qian, Y. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 11297–11302.CrossRefGoogle Scholar
  7. [7]
    Wang, X.; Yang, Z.; Sun, X.; Li, X.; Wang, D.; Wang, P.; He, D. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988–9990.CrossRefGoogle Scholar
  8. [8]
    Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.CrossRefGoogle Scholar
  9. [9]
    Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.CrossRefGoogle Scholar
  10. [10]
    Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  11. [11]
    Chan, C. K.; Peng, H.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490–495.CrossRefGoogle Scholar
  12. [12]
    Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.CrossRefGoogle Scholar
  13. [13]
    Du, N.; Zhang, H.; Chen, B.; Wu, J.; Ma, X.; Liu, Z.; Zhang, Y.; Yang, D.; Huang, X.; Tu, J. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.CrossRefGoogle Scholar
  14. [14]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  15. [15]
    Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847–2848.CrossRefGoogle Scholar
  16. [16]
    Li, M.; Yin, Y. X.; Li, C.; Zhang, F.; Wan, L. J.; Xu, S.; Evans, D. G. Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem. Commun. 2012, 48, 410–412.CrossRefGoogle Scholar
  17. [17]
    Ai, C.; Yin, M.; Wang, C.; Sun, J. Synthesis and characterization of spinel type ZnCo2O4 as a novel anode material for lithium ion batteries. J. Mater. Sci. 2004, 39, 1077–1079.CrossRefGoogle Scholar
  18. [18]
    Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.CrossRefGoogle Scholar
  19. [19]
    Ashoka, S.; Chithaiah, P.; Thipperudraiah, K. V.; Chandrappa, G. T. Nanostructural zinc oxide hollow spheres: A facile synthesis and catalytic properties. Inorg. Chim. Acta 2010, 363, 3442–3447.CrossRefGoogle Scholar
  20. [20]
    Li, Y.; Tan, B.; Wu, Y. Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J. Am. Chem. Soc. 2006, 128, 14258–14259.CrossRefGoogle Scholar
  21. [21]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.CrossRefGoogle Scholar
  22. [22]
    Tong, Y.; Liu, Y.; Dong, L.; Zhao, D.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 2006, 110, 20263–20267.CrossRefGoogle Scholar
  23. [23]
    Ahmad, M.; Shi, Y.; Nisar, A.; Sun, H.; Shen, W.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723–7729.CrossRefGoogle Scholar
  24. [24]
    Yu, Y.; Chen, C. H.; Shui, J. L.; Xie, S. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew. Chem. Int. Ed. 2005, 44, 7085–7089.CrossRefGoogle Scholar
  25. [25]
    Pralong, V.; Leriche, J. B.; Beaudoin, B.; Naudin, E.; Morcrette, M.; Tarascon, J. M. Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium. Solid State Ionics 2004, 166, 295–305.CrossRefGoogle Scholar
  26. [26]
    Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.CrossRefGoogle Scholar
  27. [27]
    Lee, S. H.; Seo, S. D.; Jin, Y. H.; Shim, H. W.; Kim, D. W. A graphite foil electrode covered with electrochemically exfoliated graphene nanosheets. Electrochem. Commun. 2010, 12, 1419–1422.CrossRefGoogle Scholar
  28. [28]
    Zhou, W.; Cheng, C.; Liu, J.; Tay, Y. Y.; Jiang, J.; Jia, X.; Zhang, J.; Gong, H.; Hng, H. H.; Yu, T.; et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.CrossRefGoogle Scholar
  29. [29]
    Xue, X.; Chen, Z.; Xing, L.; Yuan, S.; Chen, Y. SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun. 2011, 47, 5205–5207.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chan Woo Lee
    • 1
    • 2
  • Seung-Deok Seo
    • 3
  • Dong Wook Kim
    • 4
  • Sangbaek Park
    • 1
  • Kyoungsuk Jin
    • 1
    • 2
  • Dong-Wan Kim
    • 3
  • Kug Sun Hong
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.WCU Hybrid Materials Program, Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  3. 3.Department of Material Science and EngineeringAjou UniversitySuwonKorea
  4. 4.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations