Nano Research

, Volume 6, Issue 5, pp 312–325 | Cite as

A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging

  • Lina Wu
  • Xin Cai
  • Kate Nelson
  • Wenxin Xing
  • Jun Xia
  • Ruiying Zhang
  • Allen J. Stacy
  • Micah Luderer
  • Gregory M. Lanza
  • Lihong V. Wang
  • Baozhong Shen
  • Dipanjan Pan
Research Article

Abstract

Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near-infrared (NIR) probe may offer opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for fabricating luminescent carbon nanoparticles with rapid clearance properties. A one-pot “green” technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g., polysorbate, polyethyleneglycol) in solvent-free conditions. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (∼7 nm) than previously explored particles (gold, single-walled carbon nanotubes, copper) for SLN imaging. The results indicate an exceptionally rapid signal enhancement (∼2 min) of the SLN. Owing to their strong optical absorption in the NIR region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused in axillary investigation by mismarking with dyes or low-resolution imaging techniques.

Keywords

carbon nanoparticle honey contrast agents photoacoustic tomography real-time imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_308_MOESM1_ESM.pdf (334 kb)
Supplementary material, approximately 333 KB.
12274_2013_308_MOESM2_ESM.avi (3 mb)
Supplementary material, approximately 3.01 MB.

References

  1. [1]
    Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.CrossRefGoogle Scholar
  2. [2]
    Jokerst, J. V.; Thangaraj, M.; Kempen, P. J.; Sinclair, R.; Gambhir, S. S. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano. 2012, 6, 5920–5930.CrossRefGoogle Scholar
  3. [3]
    Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.CrossRefGoogle Scholar
  4. [4]
    Pan, D.; Pramanik, M.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging. Contrast Media Mol. Imaging 2011, 6, 378–388.CrossRefGoogle Scholar
  5. [5]
    Chen, Z. Y.; Ma, L. J.; Liu, Y.; Chen, C. Y. Applications of functionalized fullerenes in tumor theranostics. Theranostics 2012, 2, 238–250.CrossRefGoogle Scholar
  6. [6]
    de la Zerda, A.; Liu, Z.; Bodapati, S.; Teed, R.; Vaithilingam, S.; Khuri-Yakub, B. T.; Chen, X. Y.; Dai, H. J.; Gambhir, S. S. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 2010, 10, 2168–72.CrossRefGoogle Scholar
  7. [7]
    Li, M. L.; Oh, J. T.; Xie, X.; Ku, G.; Wang, W.; Li, C.; Lungu, G.; Stoica, G.; Wang, L. V. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 2008, 96, 481–489.CrossRefGoogle Scholar
  8. [8]
    Wang, X. D.; Xie, X. Y.; Ku, G.; Wang, L. V.; Stoica, G. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 2006, 11, 024015.CrossRefGoogle Scholar
  9. [9]
    Pan, D.; Pramanik, M.; Senpan, A.; Allen, J. S.; Zhang, H. Y.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 2011, 25, 875–882.CrossRefGoogle Scholar
  10. [10]
    Pan, D.; Pramanik, M.; Senpan, A.; Ghosh, S.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 2010, 31, 4088–4093.CrossRefGoogle Scholar
  11. [11]
    Schneider, B. P.; Miller, K. D. Angiogenesis of breast cancer. J. Clin. Oncol. 2005, 23, 1782–1790.CrossRefGoogle Scholar
  12. [12]
    Agarwal, A.; Huang, S. W.; O’Donnell, M.; Day, K. C.; Day, M.; Kotov, N. A.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.CrossRefGoogle Scholar
  13. [13]
    de la Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O.; Cheng, Z.; Chen, X. Y.; Dai, H. J.; Khuri-Yakub, B. T.; Gambhir, S. S. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.CrossRefGoogle Scholar
  14. [14]
    Pan, D.; Cai, X.; Yalaz, C.; Senpan, A.; Omanakuttan, K.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. ACS Nano. 2012, 6, 1260–1267.CrossRefGoogle Scholar
  15. [15]
    Jose, J.; Grootendorst, D. J.; Vijn, T. W.; Wouters, M. W.; van Boven, H.; van Leeuwen, T. G.; Steenbergen, W.; Ruers, T. J. M.; Manohar, S. Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography. J. Biomed. Opt. 2011, 16, 096021.CrossRefGoogle Scholar
  16. [16]
    Purushotham, A. D.; Upponi, S.; Klevesath, M. B.; Bobrow, L.; Millar, K.; Myles, J. P.; Duffy, S. W. Morbidity after sentinel lymph node biopsy in primary breast cancer: Results from a randomized controlled trial. J. Clin. Oncol. 2005, 23, 4312–4321.CrossRefGoogle Scholar
  17. [17]
    Krag, D. N.; Anderson, S. J.; Julian, T. B.; Brown, A. M.; Harlow, S. P.; Costantino, J. P.; Ashikaga, T.; Weaver, D. L.; Mamounas, E. P.; Jalovec, L. M. et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010, 11, 927–933.CrossRefGoogle Scholar
  18. [18]
    Krag, D.; Weaver, D.; Ashikaga, T.; Moffat, F.; Klimberg, V. S.; Shriver, C.; Feldman, S.; Kusminsky, R.; Gadd, M.; Kuhn, J. et al. The sentinel node in breast cancer-A multicenter validation study. N. Eng. J. Med. 1998, 339, 941–946.CrossRefGoogle Scholar
  19. [19]
    McMasters, K. M.; Tuttle, T. M.; Carlson, D. J. Sentinel lymph node biopsy for breast cancer: A suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. J. Clin. Oncol. 2000, 18, 2560–2566.Google Scholar
  20. [20]
    Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851.CrossRefGoogle Scholar
  21. [21]
    Song, K. H.; Stein, E. W.; Margenthaler, J. A.; Wang, L. V. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt. 2008, 13, 054033.CrossRefGoogle Scholar
  22. [22]
    Li, P. C.; Wang, C. R. C.; Shieh, D. B.; Wei, C. W.; Liao, C. K.; Poe, C.; Jhan, S.; Ding, A. A.; Wu, Y. N. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt. Express 2008, 16, 18605–18615.CrossRefGoogle Scholar
  23. [23]
    Wang, Z. J.; Wu, L. N.; Cai, W. Size-tunable synthesis of monodisperse water-soluble gold nanoparticles with high X-ray attenuation. Chem. Eur. J. 2010, 16, 1459–1463.CrossRefGoogle Scholar
  24. [24]
    Pramanik, M.; Swierczewska, M.; Green, D.; Sitharaman, V.; Wang, L. V. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 2009, 14, 034018.CrossRefGoogle Scholar
  25. [25]
    de la Zerda, A.; Bodapati, S.; Teed, R.; May, S. Y.; Tabakman, S. M.; Liu, Z.; Khuri-Yakub, B. T.; Chen, X. Y.; Dai, H. J.; Gambhir, S. S. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 2012, 6, 4694–4701.CrossRefGoogle Scholar
  26. [26]
    Hu, Z. Y.; Pantoş, G. D.; Kuganathan, N.; Arrowsmith, R. L.; Jacobs, R. M. J.; Kociok-Köhn, G.; O’Byrne, J.; Jurkschat, K.; Burgos, P.; Tyrrell, R. M. et al. Interactions between amino acid-tagged naphthalenediimide and single walled carbon nanotubes for the design and construction of new bioimaging probes. Adv. Funct. Mater. 2012, 22, 503–518.CrossRefGoogle Scholar
  27. [27]
    Liu, Z.; Tabakman, S. M.; Chen, Z.; Dai, H. J. Preparation of carbon nanotube bioconjugates for biomedical applications. Nature Protoc. 2009, 4, 1372–1381.CrossRefGoogle Scholar
  28. [28]
    Sohrabnezhad, S.; Pourahmad, A.; Sadjadi, M. A. New methylene blue incorporated in mordenite zeolite as humidity sensor material. Mater. Lett. 2007, 61, 2311–2314.CrossRefGoogle Scholar
  29. [29]
    Xie, J.; Lee, S.; Chen, S. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079.CrossRefGoogle Scholar
  30. [30]
    Brewer, G. J. Copper toxicity in the general population. Clin. Neurophysiol. 2010, 121, 459–460.CrossRefGoogle Scholar
  31. [31]
    Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X. M.; Dai, H. J.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol. 2008, 3, 216–221.CrossRefGoogle Scholar
  32. [32]
    Yang, S. T.; Luo, J. B.; Zhou, Q. H.; Wang, H. F. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2012, 2, 271–282.CrossRefGoogle Scholar
  33. [33]
    Pan, D.; Cai, X.; Kim, B.; Stacy, A. J.; Wang, L. V.; Lanza, G. M. Rapid synthesis of near infrared polymeric micelles for real-time sentinel lymph node imaging. Adv. Healthcare Mater. 2012, 1, 582–589.CrossRefGoogle Scholar
  34. [34]
    Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.CrossRefGoogle Scholar
  35. [35]
    Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473–6475.CrossRefGoogle Scholar
  36. [36]
    Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539–4541.CrossRefGoogle Scholar
  37. [37]
    Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 37, 5104–5110.CrossRefGoogle Scholar
  38. [38]
    Liu, Z.; Liang, X. J. Nano-carbons as theranostics. Theranostics 2012, 2, 235–237.CrossRefGoogle Scholar
  39. [39]
    Cao, L.; Yang, S. T.; Wang, X.; Luo, P. G.; Liu, J. H.; Sahu, S.; Liu, Y. M.; Sun, Y. P. Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics 2012, 2, 295–301.CrossRefGoogle Scholar
  40. [40]
    Swierczewska, M.; Choi, K. Y.; Mertz, E. L.; Huang, X. L.; Zhang, F.; Zhu, L.; Yoon, H. Y.; Park, J. H.; Bhirde, A.; Lee, S. et al. A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 2012, 12, 3613–3620.CrossRefGoogle Scholar
  41. [41]
    Zhu, Y.; Li, J.; Li, W. X.; Zhang, Y.; Yang, X. F.; Chen, N.; Sun, Y. H.; Zhao, Y.; Fan, C. H.; Huang, Q. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2012, 2, 302–312.CrossRefGoogle Scholar
  42. [42]
    Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Carbon materials for drug delivery and cancer therapy. Mater. Today 2011, 14, 316–323.CrossRefGoogle Scholar
  43. [43]
    Zhou, C.; Hao, G. Y.; Thomas, P.; Liu, J. B.; Yu, M. X.; Sun, S. S.; Öz, O. K.; Sun, X. K.; Zheng, J. Near infrared emitting radioactive gold nanoparticles with small-molecule-like pharmacokinetics. Angew. Chem., Int. Ed. 2012, 51, 10118–10122.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lina Wu
    • 1
    • 2
  • Xin Cai
    • 3
  • Kate Nelson
    • 4
  • Wenxin Xing
    • 3
  • Jun Xia
    • 3
  • Ruiying Zhang
    • 3
  • Allen J. Stacy
    • 1
  • Micah Luderer
    • 1
  • Gregory M. Lanza
    • 1
  • Lihong V. Wang
    • 3
  • Baozhong Shen
    • 2
  • Dipanjan Pan
    • 1
  1. 1.C-TRAIN and Division of CardiologyWashington University School of MedicineSaint LouisUSA
  2. 2.Key Laboratory of Molecular Imaging in College of Heilongjiang Province, Department of Radiologythe 4th Affiliated Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Optical Imaging Laboratory, Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA
  4. 4.Nano Research Facility (NNIN-NSF)Washington University in St. LouisSt. LouisUSA

Personalised recommendations