Nano Research

, Volume 6, Issue 5, pp 303–311 | Cite as

Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact

  • Alexander Nerowski
  • Joerg Opitz
  • Larysa Baraban
  • Gianaurelio Cuniberti
Research Article

Abstract

We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtCl6 solution. The influence of the concentration of the platinumcontaining acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.

Keywords

bottom-up growth directed electrochemical nanowire assembly (DENA) metal nanowires nanostructuring nanoelectronics local electric field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_303_MOESM1_ESM.pdf (367 kb)
Supplementary material, approximately 367 KB.

References

  1. [1]
    Cheng, G.; Siles, P. F.; Bi, F.; Cen, C.; Bogorin, D. F.; Bark, C. W.; Folkman, C. M.; Park, J.-W.; Eom, C.-B.; Medeiros-Ribeiro, G.; et al. Sketched oxide single-electron transistor. Nat. Nanotechnol. 2011, 6, 343–347.CrossRefGoogle Scholar
  2. [2]
    Blunt, M. O.; Russell, J. C.; Gimenez-Lopez, M. d. C.; Taleb, N.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74–78.CrossRefGoogle Scholar
  3. [3]
    Wang, D.; Sheriff, B. A.; Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 2006, 6, 1096–1100.CrossRefGoogle Scholar
  4. [4]
    Kuzyk, A. Dielectrophoresis at the nanoscale. Electrophoresis 2011, 32, 2307–2313.Google Scholar
  5. [5]
    Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112–115.CrossRefGoogle Scholar
  6. [6]
    Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: What’s next? Nano Lett. 2010, 10, 1529–1536.CrossRefGoogle Scholar
  7. [7]
    Mijatovic, D.; Eijkel, J. C. T.; van den Berg, A. Technologies for nanofluidic systems: Top-down vs. bottom-up-A review. Lab Chip 2005, 5, 492–500.CrossRefGoogle Scholar
  8. [8]
    He, B.; Morrow, T. J.; Keating, C. D. Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 2008, 12, 522–528.CrossRefGoogle Scholar
  9. [9]
    Lal, S.; Hafner, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble metal nanowires: From plasmon waveguides to passive and active devices. Acc. Chem. Res. 2012, 45, 1887–1895.CrossRefGoogle Scholar
  10. [10]
    Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313.CrossRefGoogle Scholar
  11. [11]
    Balasubramanian, K. Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: A review. Biosens. Bioelectron. 2010, 26, 1195–204.CrossRefGoogle Scholar
  12. [12]
    Nerowski, A.; Poetschke, M.; Bobeth, M.; Opitz, J.; Cuniberti, G. Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir 2012, 28, 7498–7504.CrossRefGoogle Scholar
  13. [13]
    Pohl, H. A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields; Cambridge University Press: Cambridge, 1978.Google Scholar
  14. [14]
    Li, M.; Bhiladvala, R. B.; Morrow, T. J.; Sioss, J. A.; Lew, K.-K.; Redwing, J. M.; Keating, C. D.; Mayer, T. S. Bottomup assembly of large-area nanowire resonator arrays. Nat. Nanotechnol. 2008, 3, 88–92.CrossRefGoogle Scholar
  15. [15]
    Papadakis, S.; Hoffmann, J.; Deglau, D.; Chen, A. Tyagi P.; Gracias D. H. Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale 2011, 3, 1059–1065.CrossRefGoogle Scholar
  16. [16]
    Hermanson, K. D.; Lumsdon, S. O.; Williams, J. P.; Kaler, E. W.; Velev, O. D. Dielectrophoretic assembly of electrically functional microwires From nanoparticle suspensions. Science 2001, 294, 1082–1086.CrossRefGoogle Scholar
  17. [17]
    Cheng, C.; Gonela, R. K.; Gu, Q.; Haynie, D. T. Self-assembly of metallic nanowires from aqueous solution. Nano Lett. 2005, 5, 175–178.CrossRefGoogle Scholar
  18. [18]
    La Ferrara, V.; Madathil, A. P.; Mauro, A. D. G. D.; Massera, E.; Polichetti, T.; Rametta, G. The effect of solvent on the morphology of ZnO nanostructure assembly by dielectrophoresis and its device applications. Electrophoresis 2012, 33, 2086–2093.CrossRefGoogle Scholar
  19. [19]
    Flanders, B. N. Directed electrochemical nanowire assembly: Precise nanostructrue assembly via dendritic solidification. Mod. Phys. Lett. B 2012, 26, 1130001.CrossRefGoogle Scholar
  20. [20]
    Ranjan, N.; Vinzelberg, H.; Mertig, M. Growing onedimensional metallic nanowires by dielectrophoresis. Small 2006, 2, 1490–1496.CrossRefGoogle Scholar
  21. [21]
    Bhatt, K. H.; Velev, O. D. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 2004, 20, 467–476.CrossRefGoogle Scholar
  22. [22]
    Gierhart, B. C.; Howitt, D. G.; Chen, S. J.; Smith, R. L.; Collins, S. D. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir 2007, 23, 12450–12456.CrossRefGoogle Scholar
  23. [23]
    Ozturk, B.; Talukdar, I.; Flanders, B. N. Directed growth of diameter-tunable nanowires. Nanotechnology 2007, 18, 365302.CrossRefGoogle Scholar
  24. [24]
    Shelimov, B.; Lambert, J. F.; Che, M.; Didillon, B. Application of NMR to interfacial coordination chemistry: A 195Pt NMR study of the interaction of hexachloroplatinic acid aqueous solutions with alumina. J. Am. Chem. Soc. 1999, 121, 545–556.CrossRefGoogle Scholar
  25. [25]
    Kawasaki, J. K.; Arnold, C. B. Synthesis of latinum dendrites and nanowires via directed electrochemical nanowire assembly. Nano Lett. 2011, 11, 781–785.CrossRefGoogle Scholar
  26. [26]
    Ciobanas, A. I.; Bejan, A.; Fautrelle, Y. Dendritic solidification morphology viewed from the perspective of constructal theory. J. Phys. D: Appl. Phys. 2006, 39, 5252–5266.CrossRefGoogle Scholar
  27. [27]
    Marcus, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 1994, 51, 111–127.CrossRefGoogle Scholar
  28. [28]
    Gierer, A.; Wirtz, K. Molekulare theorie der mikroreibung (Molecular theory of microfriction). Z. Naturforschg. 1953, 8a, 532–538.Google Scholar
  29. [29]
    Laliberté, M. Model for calculating the viscosity of aqueous solutions. J. Chem. Eng. Data 2007, 52, 321–335.CrossRefGoogle Scholar
  30. [30]
    Trivedi, R.; Lipton, J.; Kurz, W. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metall. 1987, 35, 965–970.CrossRefGoogle Scholar
  31. [31]
    Thapa, P. S.; Ackerson, B. J.; Grischkowsky, D. R.; Flanders, B. N. Directional growth of metallic and polymeric nanowires. Nanotechnology 2009, 20, 235307.CrossRefGoogle Scholar
  32. [32]
    Ranjan, N.; Mertig, M.; Cuniberti, G.; Pompe, W. Dielectrophoretic growth of metallic nanowires and microwires: Theory and experiments. Langmuir 2010, 26, 552–559.CrossRefGoogle Scholar
  33. [33]
    Lumsdon, S. O.; Scott, D. M. Assembly of colloidal particles into microwires using an alternating electric field. Langmuir 2005, 21, 4874–4880.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Nerowski
    • 1
  • Joerg Opitz
    • 1
    • 2
  • Larysa Baraban
    • 1
  • Gianaurelio Cuniberti
    • 1
    • 3
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany
  2. 2.Fraunhofer Institute for Non-Destructive TestingDresdenGermany
  3. 3.Division of IT Convergence EngineeringPOSTECHPohangRepublic of Korea

Personalised recommendations