Nano Research

, Volume 6, Issue 4, pp 263–268 | Cite as

Wafer scale direct-write of Ge and Si nanostructures with conducting stamps and a modified mask aligner

Research Article


The broad availability of high throughput nanostructure fabrication is essential for advancement in nanoscale science. Large-scale manufacturing developed by the semiconductor industry is often too resource-intensive for medium scale laboratory prototyping. We demonstrate the inexpensive wafer scale directwrite of Ge and Si nanostructures with a 4-inch mask aligner retrofitted with a conducting microstructured stamp. A bias applied between the stamp and an underlying silicon substrate results in the reaction of diphenylgermane and diphenylsilane precursors at the stamp-substrate interface to yield the directwrite of Ge and Si nanostructures in determined locations. With the increasing number of outdated mask aligners available from the semiconductor industry and an extensive library of liquid precursors, this strategy provides facile, inexpensive, wafer scale semiconductor direct-write for applications such as electronics, photonics, and photovoltaics.

Graphical abstract


Ge Si nanolithography microcontact printing scanning probe lithography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_302_MOESM1_ESM.pdf (491 kb)
Supplementary material, approximately 490 KB.


  1. [1]
    Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M. Microfabrication by microcontact printing of self-assembled monolayers. Adv. Mater. 1994, 6, 600–604.CrossRefGoogle Scholar
  2. [2]
    Bernard, A.; Renault, J. P.; Michel, B.; Bosshard, H. R.; Delamarche, E. Microcontact printing of proteins. Adv. Mater. 2000, 12, 1067–1070.CrossRefGoogle Scholar
  3. [3]
    Wang, Z. B.; Zhang, P. P.; Kirkland, B.; Liu, Y. R.; Guan, J. J. Microcontact printing of polyelectrolytes on PEG using an unmodified PDMS stamp for micropatterning nanoparticles, DNA, proteins and cells. Soft Matter 2012, 8, 7630–7637.CrossRefGoogle Scholar
  4. [4]
    McConnell, K. I.; Slater, J. H.; Han, A.; West, J. L.; Suh, J. Microcontact printing for co-patterning cells and viruses for spatially controlled substrate-mediated gene delivery. Soft Matter 2011, 7, 4993–5001.CrossRefGoogle Scholar
  5. [5]
    Zhong, C.; Kapetanovic, A.; Deng, Y.; Rolandi, M. A chitin nanofiber ink for airbrushing, replica molding, and microcontact printing of self-assembled macro-, micro-, and nanostructures. Adv. Mater. 2011, 23, 4776–4781.CrossRefGoogle Scholar
  6. [6]
    Santhanam, V.; Andres, R. P. Microcontact printing of uniform nanoparticle srrays. Nano Lett. 2004, 4, 41–44.CrossRefGoogle Scholar
  7. [7]
    Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 2010, 110, 3–24.CrossRefGoogle Scholar
  8. [8]
    Winther-Jensen, B.; Krebs, F. C. High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition. Sol. Energ. Mater. Sol. C 2006, 90, 123–132.CrossRefGoogle Scholar
  9. [9]
    Peroz, C.; Dhuey, S.; Cornet, M.; Vogler, M.; Olynick, D.; Cabrini, S. Single digit nanofabrication by step-and-repeat nanoimprint lithography. Nanotechnology 2012, 23, 015305.CrossRefGoogle Scholar
  10. [10]
    Ahn, S. H.; Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310.CrossRefGoogle Scholar
  11. [11]
    Albonetti, C.; Martinez, J.; Losilla, N. S.; Greco, P.; Cavallini, M.; Borgatti, F.; Montecchi, M.; Pasquali, L.; Garcia, R.; Biscarini, F. Parallel-local anodic oxidation of silicon surfaces by soft stamps. Nanotechnology 2008, 19, 435303.CrossRefGoogle Scholar
  12. [12]
    Simeone, F. C.; Albonetti, C.; Cavallini, M. Progress in micro- and nanopatterning via electrochemical lithography. J. Phys. Chem. C 2009, 113, 18987–18994.CrossRefGoogle Scholar
  13. [13]
    Pantazi, A.; Sebastian, A.; Antonakopoulos, T. A.; Bächtold, P.; Bonaccio, A. R.; Bonan, J.; Cherubini, G.; Despont, M.; DiPietro, R. A.; Drechsler, U. et al. Probe-based ultrahigh-density storage technology. IBM J. Res. Dev. 2008, 52, 493–511.CrossRefGoogle Scholar
  14. [14]
    Pires, D.; Hedrick, J. L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A. W. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328, 732–735.CrossRefGoogle Scholar
  15. [15]
    Huo, F. W.; Zheng, Z. J.; Zheng, G. F.; Giam, L. R.; Zhang, H.; Mirkin, C. A. Polymer pen lithography. Science 2008, 321, 1658–1660.CrossRefGoogle Scholar
  16. [16]
    Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.CrossRefGoogle Scholar
  17. [17]
    Torrey, J. D.; Vasko, S. E.; Kapetanovic, A.; Zhu, Z.; Scholl, A.; Rolandi, M. Scanning probe direct-write of germanium nanostructures. Adv. Mater. 2010, 22, 4639–4642.CrossRefGoogle Scholar
  18. [18]
    Vasko, S. E.; Jiang, W. J.; Chen, R. Y.; Hanlen, R.; Torrey, J. D.; Dunham, S. T.; Rolandi, M. Insights into scanning probe high-field chemistry of diphenylgermane. Phys. Chem. Chem. Phys. 2011, 13, 4842–4845.CrossRefGoogle Scholar
  19. [19]
    Vasko, S. E.; Kapetanovic, A.; Talla, V.; Brasino, M.; Torrey, J. D.; Scholl, A.; Rolandi, M. Serial and parallel Si, Ge, and SiGe direct write with scanning probes and conductive stamps. Nano Lett. 2011, 11, 2386–2389.CrossRefGoogle Scholar
  20. [20]
    Vasko, S. E.; Jiang, W.; Lai, H.; Sadilek, M.; Dunham, S.; Rolandi, M. High-field chemistry of organometallic precursors for direct-write of germanium and silicon nanostructures. J. Mater. Chem. C 2013, 1, 282–289.CrossRefGoogle Scholar
  21. [21]
    Kan, M. TSMC’s 450 mm Wafer Production to Start in 2018, Following Delays PCWorld [Online]. 2012; Google Scholar
  22. [22]
    Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elestomeric polymer. Nature 1998, 393, 146–149.CrossRefGoogle Scholar
  23. [23]
    Farrell, R. A.; Kinahan, N. T.; Hansel, S.; Stuen, K. O.; Petkov, N.; Shaw, M. T.; West, L. E.; Djara, V.; Dunne, R. J.; Varona, O. G. et al. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly. Nanoscale 2012, 4, 3228–3236.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hideki Sato
    • 1
    • 2
  • Stephanie E. Vasko
    • 1
    • 3
  • Marco Rolandi
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Japan Patent OfficeTokyoJapan
  3. 3.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations