Skip to main content

Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes

Abstract

Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li15Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO-Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1,500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. Scrosati, B. Battery technology-challenge of portable power. Nature 1995, 373, 557–558.

    Article  CAS  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  3. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  4. Rolison, D. R.; Nazar, L. F. Electrochemical energy storage to power the 21st century. MRS Bull. 2011, 36, 486–493.

    Article  CAS  Google Scholar 

  5. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  CAS  Google Scholar 

  6. Liu, J.; Cao, G. Z.; Yang, Z. G.; Wang, D. H.; Dubois, D.; Zhou, X. D.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.

    Article  CAS  Google Scholar 

  7. Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.; Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 2008, 7, 916–921.

    Article  CAS  Google Scholar 

  8. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  CAS  Google Scholar 

  9. Sun, Y. K.; Myung, S. T.; Park, B. C.; Prakash, J.; Belharouak, I.; Amine, K. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 2009, 8, 320–324.

    Article  CAS  Google Scholar 

  10. Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electro-chemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

    Article  CAS  Google Scholar 

  11. Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

    Article  Google Scholar 

  12. Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

    Article  CAS  Google Scholar 

  13. Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587–590.

    Article  CAS  Google Scholar 

  14. Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.

    Article  CAS  Google Scholar 

  15. Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  CAS  Google Scholar 

  16. Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowire for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

    Article  CAS  Google Scholar 

  17. Chen, H. T.; Xu, J.; Chen, P. C.; Fang, X.; Qiu, J.; Fu, Y.; Zhou, C. W. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. ACS Nano 2011, 5, 8383–8390.

    Article  CAS  Google Scholar 

  18. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrodes for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

    Article  CAS  Google Scholar 

  19. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anode using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

    Article  CAS  Google Scholar 

  20. Rong, J. P.; Masarapu, C.; Ni, J.; Zhang, Z. J.; Wei, B. Q. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 2010, 4, 4683–4690.

    Article  CAS  Google Scholar 

  21. Zhou, S.; Liu, X. H.; Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.

    Article  CAS  Google Scholar 

  22. Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem., Int. Ed. 2008, 47, 10151–10154.

    Article  CAS  Google Scholar 

  23. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    Article  CAS  Google Scholar 

  24. Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. II. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

    Article  CAS  Google Scholar 

  25. Park, J.; Lu, W.; Sastry, A. M. Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 2011, 158, A201–A206.

    Article  CAS  Google Scholar 

  26. Evanoff, K.; Khan, J.; Balandin, A. A.; Magasinski, A.; Ready, W. J.; Fuller, T. F.; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube — enabled architecture. Adv. Mater. 2012, 24, 533–537.

    Article  CAS  Google Scholar 

  27. Yao, Y.; Huo, K. F.; Hu, L. B.; Liu, N.; Cha, J. J.; McDowell, M. T.; Chu, P. K.; Cui, Y. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. ACS Nano 2011, 5, 8346–8351.

    Article  CAS  Google Scholar 

  28. Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415–4420.

    Article  CAS  Google Scholar 

  29. Yoriya, S.; Grimes, C. A. Self-assembled TiO2 nanotube arrays by anodizationi of titanium in diethylene glycol: Approach to extended pore widening. Langmuir 2010, 26, 417–420.

    Article  CAS  Google Scholar 

  30. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 2001, 4, A137–A140.

    Article  CAS  Google Scholar 

  31. Park, M. S.; Wang, G. X.; Liu, H. K.; Dou, S. X. Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochim. Acta 2006, 51, 5246–5249.

    Article  CAS  Google Scholar 

  32. Moon, T.; Kim, C.; Park, B. Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries. J. Power Sources 2006, 155, 391–394.

    Article  CAS  Google Scholar 

  33. Yin, J. T.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J. Electrochem. Soc. 2006, 153, A472–A477.

    Article  CAS  Google Scholar 

  34. Kim, Y. L.; Sun, Y. K.; Lee, S. M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochim. Acta 2008, 53, 4500–4504.

    Article  CAS  Google Scholar 

  35. Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598.

    Article  CAS  Google Scholar 

  36. Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.

    Article  CAS  Google Scholar 

  37. Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, C. S.; Ghodssi, R.; Culver, J. N. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 2010, 4, 5366–5372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Additional information

These authors contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rong, J., Fang, X., Ge, M. et al. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Res. 6, 182–190 (2013). https://doi.org/10.1007/s12274-013-0294-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0294-x

Keywords

  • lithium ion battery
  • anodic titanium oxide
  • silicon anode