Nano Research

, Volume 6, Issue 3, pp 182–190 | Cite as

Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes

  • Jiepeng Rong
  • Xin Fang
  • Mingyuan Ge
  • Haitian Chen
  • Jing Xu
  • Chongwu ZhouEmail author
Research Article


Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li15Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO-Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1,500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.

Graphical abstract


lithium ion battery anodic titanium oxide silicon anode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_294_MOESM1_ESM.pdf (340 kb)
Supplementary material, approximately 338 KB.


  1. [1]
    Scrosati, B. Battery technology-challenge of portable power. Nature 1995, 373, 557–558.CrossRefGoogle Scholar
  2. [2]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  3. [3]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  4. [4]
    Rolison, D. R.; Nazar, L. F. Electrochemical energy storage to power the 21st century. MRS Bull. 2011, 36, 486–493.CrossRefGoogle Scholar
  5. [5]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  6. [6]
    Liu, J.; Cao, G. Z.; Yang, Z. G.; Wang, D. H.; Dubois, D.; Zhou, X. D.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.CrossRefGoogle Scholar
  7. [7]
    Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.; Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 2008, 7, 916–921.CrossRefGoogle Scholar
  8. [8]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  9. [9]
    Sun, Y. K.; Myung, S. T.; Park, B. C.; Prakash, J.; Belharouak, I.; Amine, K. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 2009, 8, 320–324.CrossRefGoogle Scholar
  10. [10]
    Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electro-chemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.CrossRefGoogle Scholar
  11. [11]
    Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.CrossRefGoogle Scholar
  12. [12]
    Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.CrossRefGoogle Scholar
  13. [13]
    Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587–590.CrossRefGoogle Scholar
  14. [14]
    Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.CrossRefGoogle Scholar
  15. [15]
    Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  16. [16]
    Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowire for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.CrossRefGoogle Scholar
  17. [17]
    Chen, H. T.; Xu, J.; Chen, P. C.; Fang, X.; Qiu, J.; Fu, Y.; Zhou, C. W. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. ACS Nano 2011, 5, 8383–8390.CrossRefGoogle Scholar
  18. [18]
    Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrodes for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.CrossRefGoogle Scholar
  19. [19]
    Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anode using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.CrossRefGoogle Scholar
  20. [20]
    Rong, J. P.; Masarapu, C.; Ni, J.; Zhang, Z. J.; Wei, B. Q. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 2010, 4, 4683–4690.CrossRefGoogle Scholar
  21. [21]
    Zhou, S.; Liu, X. H.; Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.CrossRefGoogle Scholar
  22. [22]
    Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem., Int. Ed. 2008, 47, 10151–10154.CrossRefGoogle Scholar
  23. [23]
    Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.CrossRefGoogle Scholar
  24. [24]
    Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. II. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.CrossRefGoogle Scholar
  25. [25]
    Park, J.; Lu, W.; Sastry, A. M. Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 2011, 158, A201–A206.CrossRefGoogle Scholar
  26. [26]
    Evanoff, K.; Khan, J.; Balandin, A. A.; Magasinski, A.; Ready, W. J.; Fuller, T. F.; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube — enabled architecture. Adv. Mater. 2012, 24, 533–537.CrossRefGoogle Scholar
  27. [27]
    Yao, Y.; Huo, K. F.; Hu, L. B.; Liu, N.; Cha, J. J.; McDowell, M. T.; Chu, P. K.; Cui, Y. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. ACS Nano 2011, 5, 8346–8351.CrossRefGoogle Scholar
  28. [28]
    Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415–4420.CrossRefGoogle Scholar
  29. [29]
    Yoriya, S.; Grimes, C. A. Self-assembled TiO2 nanotube arrays by anodizationi of titanium in diethylene glycol: Approach to extended pore widening. Langmuir 2010, 26, 417–420.CrossRefGoogle Scholar
  30. [30]
    Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 2001, 4, A137–A140.CrossRefGoogle Scholar
  31. [31]
    Park, M. S.; Wang, G. X.; Liu, H. K.; Dou, S. X. Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochim. Acta 2006, 51, 5246–5249.CrossRefGoogle Scholar
  32. [32]
    Moon, T.; Kim, C.; Park, B. Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries. J. Power Sources 2006, 155, 391–394.CrossRefGoogle Scholar
  33. [33]
    Yin, J. T.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J. Electrochem. Soc. 2006, 153, A472–A477.CrossRefGoogle Scholar
  34. [34]
    Kim, Y. L.; Sun, Y. K.; Lee, S. M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochim. Acta 2008, 53, 4500–4504.CrossRefGoogle Scholar
  35. [35]
    Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598.CrossRefGoogle Scholar
  36. [36]
    Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.CrossRefGoogle Scholar
  37. [37]
    Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, C. S.; Ghodssi, R.; Culver, J. N. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 2010, 4, 5366–5372.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jiepeng Rong
    • 1
  • Xin Fang
    • 1
  • Mingyuan Ge
    • 1
  • Haitian Chen
    • 2
  • Jing Xu
    • 1
  • Chongwu Zhou
    • 2
    Email author
  1. 1.Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations