Nano Research

, Volume 6, Issue 2, pp 138–148 | Cite as

Effect of anchor and functional groups in functionalized graphene devices

  • Elvira Pembroke
  • Gedeng Ruan
  • Alexander Sinitskii
  • David A. Corley
  • Zheng Yan
  • Zhengzong Sun
  • James M. TourEmail author
Research Article


The electrical properties of chemically derived graphene and graphene grown by chemical vapor deposition (CVD), until now, have been inferior to those of mechanically exfoliated graphene. However, because graphene is easier to produce in large quantities through CVD or growth from solid carbon sources, it has a higher potential for use in future electronics applications. Generally, modifications to the pristine lattice structure of graphene tend to adversely affect the electrical properties by shifting the doping level and changing the conductivity and the mobility. Here we show that a small degree of graphene surface functionalization, using diazonium salts with electron-withdrawing and electron-donating functional groups, is sufficient to predominantly induce p-type doping, undiminished mobility, and higher conductivity at the neutrality point. Molecules without a diazonium anchor group desorb easily and do not have a significant effect on the electronic properties of graphene devices. We further demonstrate the variability between identically fabricated pristine devices, thereby underscoring the caution needed when characterizing graphene device behaviors lest conclusions be drawn based on singular extremes.


chemical vapor deposition graphene diazonium functionalization neutrality point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_289_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.09 MB.


  1. [1]
    Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.CrossRefGoogle Scholar
  2. [2]
    Levesque, P. L.; Sabri, S. S.; Aguirre, C. M.; Guillemette, J.; Siaj, M.; Desjardins, P.; Szkopek, T.; Martel, R. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 2011, 11, 132–137.CrossRefGoogle Scholar
  3. [3]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  4. [4]
    Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.CrossRefGoogle Scholar
  5. [5]
    Giljie, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394–3398.CrossRefGoogle Scholar
  6. [6]
    Xia, J. L.; Chen, F.; Tedesco, J. L.; Gaskill, D. K.; Myers-Ward, R. L.; Eddy, C. R. Jr.; Ferry, D. K.; Tao, N. J. The Transport and quantum capacitance properties of epitaxial graphene. Appl. Phys. Lett. 2010, 96, 162101.CrossRefGoogle Scholar
  7. [7]
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  8. [8]
    Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  9. [9]
    Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  10. [10]
    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  11. [11]
    Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y. M.; Tulvski, G. S.; Tsang, J. C.; Avouris, P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 2009, 9, 388–392.CrossRefGoogle Scholar
  12. [12]
    Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337.CrossRefGoogle Scholar
  13. [13]
    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M. Diazonium functionalization of surfactant-rrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.CrossRefGoogle Scholar
  14. [14]
    Huang, P.; Jing, L.; Zhu, H. R.; Gao, X. Y. Transport properties of diazonium functionalized graphene: Chiral two-dimensional hole gases. J. Phys.: Condens. Matter 2012, 24, 235305.CrossRefGoogle Scholar
  15. [15]
    Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.CrossRefGoogle Scholar
  16. [16]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S., et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  17. [17]
    Lin, J.; Zhong, J.; Reiber Kyle, J.; Penchev, M.; Ozkan, M.; Ozkan, C. Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers. Nanotechnology 2011, 22, 355701.CrossRefGoogle Scholar
  18. [18]
    Hwang, E. H.; Adam, S.; Sarma, S. D. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 2007, 98, 186806.CrossRefGoogle Scholar
  19. [19]
    Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767–771.CrossRefGoogle Scholar
  20. [20]
    Tan, Y.-W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Sarma, S. D.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.CrossRefGoogle Scholar
  21. [21]
    Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q., et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153.CrossRefGoogle Scholar
  22. [22]
    Xia, F.; Perebeinos, V.; Lin, Y.; Wu, Y.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.CrossRefGoogle Scholar
  23. [23]
    Wang, H.; Wu, Y.; Cong, C.; Shang, J.; Yu, T. Hysteresis of electronic transport in graphene transistors. ACS Nano 2010, 4, 7221–7228.CrossRefGoogle Scholar
  24. [24]
    Rumyantsev, S. L.; Liu, G.; Shur, M. S.; Balandin, A. Observation of the memory steps in graphene at elevated temperatures. Appl. Phys. Lett. 2011, 98, 222107.CrossRefGoogle Scholar
  25. [25]
    Worne, J. H.; Gullapalli, H.; Galande, C.; Ajayan, P.; Natelson, D. Local charge transfer doping in suspended graphene nanojunctions. Appl. Phys. Lett. 2012, 100, 023306.CrossRefGoogle Scholar
  26. [26]
    Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 2010, 4, 1949–1954.Google Scholar
  27. [27]
    Dyke, C. A.; Steward, M. P.; Maya, F.; Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett. 2004, 155–160.Google Scholar
  28. [28]
    Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542.CrossRefGoogle Scholar
  29. [29]
    Laforgue, A.; Addou, T.; Belanger, D. Characterization of the deposition of organic molecules at the surface of gold by the electrochemical reduction of aryldiazonium cations. Langmuir 2005, 21, 6855–6865.CrossRefGoogle Scholar
  30. [30]
    Sun, Z.; Kohama, S.-I.; Zhang, Z.; Lomeda, J. R.; Tour, J. M. Soluble graphene through edge-selective functionalization. Nano Res. 2010, 3, 117–125.CrossRefGoogle Scholar
  31. [31]
    Lim, H.; Lee, J. S.; Shin, H.-J.; Shin, H. S.; Choi, H. C. Spatially resolved spontaneous reactivity of diazonium salt on edge and basal plane of graphene without surfactant and its doping effect. Langmuir 2010, 26, 12278–12284.CrossRefGoogle Scholar
  32. [32]
    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.CrossRefGoogle Scholar
  33. [33]
    Koehler, F. M.; Jacobsen, A.; Ensslin, K.; Stampfer, C.; Stark, W. J. Selective chemical modification of graphene surfaces: Distinction between single- and bilayer graphene. Small 2010, 6, 1125–1130.CrossRefGoogle Scholar
  34. [34]
    Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010, 10, 398–405.CrossRefGoogle Scholar
  35. [35]
    Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C. N.; deHeer, W. A., et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 2010, 10, 4061–4066.CrossRefGoogle Scholar
  36. [36]
    Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.CrossRefGoogle Scholar
  37. [37]
    Huang, P.; Zhu H.; Jing, L.; Zhao, Y.; Gao, X. Graphene covalently binding aryl groups: Conductivity increases rather than decreases. ACS Nano 2011, 5, 7945–7949.CrossRefGoogle Scholar
  38. [38]
    Ho, P.-H.; Yeh, Y.-C.; Wang, D.-Y.; Li, S.-S.; Chen, H.-A.; Chung, Y.-H.; Lin, C.-C.; Wang, W.-H.; Chen, C.-W. Self-encapsulated doping of n-type graphene transistors with extended air stability. ACS Nano 2012, 6, 6215–6221.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elvira Pembroke
    • 1
  • Gedeng Ruan
    • 1
  • Alexander Sinitskii
    • 1
  • David A. Corley
    • 1
  • Zheng Yan
    • 1
  • Zhengzong Sun
    • 1
  • James M. Tour
    • 1
    • 2
    Email author
  1. 1.Departments of ChemistryRice UniversityHoustonUSA
  2. 2.Computer Science, Mechanical Engineering and Materials Science, and the Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA

Personalised recommendations