Nano Research

, Volume 6, Issue 2, pp 121–130 | Cite as

Fabrication of Noble metal-semiconductor hybrid nanostructures using phase transfer

  • Tanushree Bala
  • Ajay Singh
  • Ambarish Sanyal
  • Catriona O’Sullivan
  • Fathima Laffir
  • Claudia Coughlan
  • Kevin M. Ryan
Research Article

Abstract

An easy and effective solution based procedure for the synthesis of noble metal (both Au and Ag) tipped semiconductor nanomaterials is demonstrated where the metal precursors are taken in water and the semiconductors in organic medium, exploiting the phase transfer and reducing capability of suitably chosen ligands. The phase tranfer route is a generalised approach to form either Ag or Au tips on cadmium chalcogenide nanoparticles and nanorods. While multiple dots of noble metals are formed on the semiconductor nanomaterials initially, these coalesce into larger islands with time. The hybrids are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). A detailed FTIR analysis was also carried out to delineate the role of the ligands in the synthesis.

Graphical abstract

Keywords

semiconductor-metal hybrids Ag tips Au tips phase transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_287_MOESM1_ESM.pdf (882 kb)
Supplementary material, approximately 882 KB.

References

  1. [1]
    Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.CrossRefGoogle Scholar
  2. [2]
    Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.CrossRefGoogle Scholar
  3. [3]
    Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U. Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett. 2008, 8, 637–641.CrossRefGoogle Scholar
  4. [4]
    Costi, R.; Cohen, G.; Salant, A.; Rabani, E.; Banin, U. Electrostatic force microscopy study of single Au-CdSe hybrid nanodumbbells: Evidence for light-induced charge separation. Nano Lett. 2009, 9, 2031–2039.CrossRefGoogle Scholar
  5. [5]
    Gao, B.; Lin, Y.; Wei, S.; Zeng, J.; Liao, Y.; Chen, L.; Goldfeld, D.; Wang, X.; Luo, Y.; Dong, Z.; Hou, J. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 2012, 5, 88–98.CrossRefGoogle Scholar
  6. [6]
    Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Role of nanoparticles in photocatalysis. J. Nanopart. Res. 1999, 1, 439–458.CrossRefGoogle Scholar
  7. [7]
    Reddy, V. R.; Reddy, N. R.; Choi, C. -J. Electrical and structural properties of low-resistance Pt/Ag/Au ohmic contacts to p-type GaN. Solid-State Electron. 2005, 49, 1213–1216.CrossRefGoogle Scholar
  8. [8]
    Lotey, G. S.; Verma, N. K. Fabrication and characterization of Cu-CdSe-Cu nanowire heterojunctions. J. Nanopart. Res. 2011, 13, 5397–5405.CrossRefGoogle Scholar
  9. [9]
    O’sullivan, C.; Ahmed, S.; Ryan, K. M. Gold tip formation on perpendicularly aligned semiconductor nanorod assemblies. J. Mater. Chem. 2008, 18, 5218–5222.CrossRefGoogle Scholar
  10. [10]
    O’sullivan, C.; Gunning, R. D.; Barret, C. A.; Singh, A.; Ryan, K. M. Size controlled gold tip growth onto II–VI nanorods. J. Mater. Chem. 2010, 20, 7875–7880.CrossRefGoogle Scholar
  11. [11]
    Mao, J.; Cao, X.; Zhen, J.; Shao, H.; Gu, H.; Lu, J.; Ying, J. Y. Facile synthesis of hybrid nanostructures from nanoparticles, nanorods and nanowires. J. Mater. Chem. 2011, 21, 11478–11481.CrossRefGoogle Scholar
  12. [12]
    Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semi-conductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.CrossRefGoogle Scholar
  13. [13]
    Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS-Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.CrossRefGoogle Scholar
  14. [14]
    Shi, W. L.; Zeng, H.; Sahoo, Y.; Ohulchansky, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875–881.CrossRefGoogle Scholar
  15. [15]
    Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Kornowski, A.; Forster, S.; Weller, H. CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 2004, 126, 12984–12988.CrossRefGoogle Scholar
  16. [16]
    Pan, J.; Xi, B.; Li, J.; Yan, Y.; Li, Q.; Qian, Y. Cadmium sulfide rod-bundle structures decorated with nanoparticles from an inorganic/organic composite. J. Nanopart. Res. 2011, 13, 3535–3543.CrossRefGoogle Scholar
  17. [17]
    Talapin, D. V.; Mekis, I.; Gotzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 2004, 108, 18826–18831.CrossRefGoogle Scholar
  18. [18]
    Zhaọ, N.; Liụ, K.; Greener, J.; Nie, Z.; Kumacheva, E. Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. Nano Lett. 2009, 9, 3077–3081.CrossRefGoogle Scholar
  19. [19]
    Salant, A.; Sadovsky, E. A.; Banin, U. Directed self-assembly of gold-tipped CdSe nanorods. J. Am. Chem. Soc. 2006, 128, 10006–10007.CrossRefGoogle Scholar
  20. [20]
    Singh, A.; Geaney, H.; Laffir, F.; Ryan, K. M. Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 2012, 134, 2910–2913.CrossRefGoogle Scholar
  21. [21]
    Singh, A.; Gunning, R. D.; Ahmed, S.; Barrett, C. A.; English, N. J.; Garate, J. -A.; Ryan, K. M. Controlled semiconductor nanorod assembly from solution: Influence of concentration, charge and solvent nature. J. Mater. Chem. 2012, 22, 1562–1569.CrossRefGoogle Scholar
  22. [22]
    Singh, A.; Gunning, R. D.; Sanyal, A.; Ryan, K. M. Directing semiconductor nanorod assembly into 1D or 2D supercrystals by altering the surface charge. Chem. Commun. 2010, 46, 7193–7195.CrossRefGoogle Scholar
  23. [23]
    O’sullivan, C.; Crilly, S.; Laffir, F.; Singh, A.; Manger, E.; Ryan, K. M. Protein immobilisation on perpendicularly aligned gold tipped nanorod assemblies. Chem. Commun. 2011, 47, 2655–2657.CrossRefGoogle Scholar
  24. [24]
    Figuerola, A.; Franchini, I. R.; Fiore, A.; Mastria, R.; Falqui, A.; Bertoni, G.; Bals, S.; Tendeloo, G. V.; Kudera, S.; Cingolani, R., et al. End-to-end assembly of shape-controlled nanocrystals via a nanowelding approach mediated by gold domains. Adv. Mater. 2009, 21, 550–554.CrossRefGoogle Scholar
  25. [25]
    Yang, J.; Sargent, E.; Kelley, S.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–689.CrossRefGoogle Scholar
  26. [26]
    Bala, T.; Sanyal, A.; Singh, A.; Kelly, D.; O’sullivan, C.; Laffir, F.; Ryan, K. M. Silver tip formation on colloidal CdSe nanorods by a facile phase transfer protocol. J. Mater. Chem. 2011, 21, 6815–6820.CrossRefGoogle Scholar
  27. [27]
    Liu, H.; Owen, J. S.; Alivisatos, A. P. Mechanistic study of precursor evolution in colloidal group II–VI semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 2007, 129, 305–312.CrossRefGoogle Scholar
  28. [28]
    Nag, A.; Sapra, S.; Chakraborty, S.; Basu, S.; Sarma, D. D. Synthesis of CdSe nanocrystals in a noncoordinating solvent: Effect of reaction temperature on size and optical properties. J. Nanosci. Nanotechnol. 2007, 7, 1965–1968.CrossRefGoogle Scholar
  29. [29]
    Titov, A. V.; Král, P. Modeling the self-assembly of colloidal nanorod superlattices. Nano Lett. 2008, 8, 3605–3612.CrossRefGoogle Scholar
  30. [30]
    Boyen, H.-G.; Ethirajan, A.; Kastle, G.; Weigl, F.; Ziemann, P.; Schmid, G.; Garnier, M. G.; Buttner, M.; Oelhafen, P. Alloy formation of supported gold nanoparticles at their transition from clusters to solids: Does size matter? Phys. Rev. Lett. 2005, 94, 016804.CrossRefGoogle Scholar
  31. [31]
    Creighton, J. A.; Eadon, D. G. Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 1991, 87, 3881–3892.CrossRefGoogle Scholar
  32. [32]
    Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer Corp. Publishers: Eden Prairie, MN, 1992.Google Scholar
  33. [33]
    NIST X-ray Photoelectron Spectroscopy Database, Version 3.5, http://srdata.nist.gov/xps/ (accessed on 13 August, 2012)
  34. [34]
    O’sullivan, C.; Gunning, R. D.; Sanyal, A.; Barrett, C. A.; Geaney, H.; Laffir, F.; Ahmed, S.; Ryan, K. M. Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J. Am. Chem. Soc. 2009, 131, 12250–12257.CrossRefGoogle Scholar
  35. [35]
    Newman, J. D. S.; Blanchard, G. J. Formation of gold nanoparticles using amine reducing agents. Langmuir 2006, 22, 5882–5887.CrossRefGoogle Scholar
  36. [36]
    Wang, W.; Efrima, S.; Regev, O. Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir 1998, 14, 602–610.CrossRefGoogle Scholar
  37. [37]
    Selvakannan, P. R.; Swami, A.; Srisathiyanarayanan, D.; Shirude, P. S.; Pasricha, R.; Mandale A. B.; Sastry, M. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir, 2004, 20, 7825–7836.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tanushree Bala
    • 1
  • Ajay Singh
    • 1
    • 2
  • Ambarish Sanyal
    • 1
  • Catriona O’Sullivan
    • 1
  • Fathima Laffir
    • 1
  • Claudia Coughlan
    • 1
    • 2
  • Kevin M. Ryan
    • 1
    • 2
  1. 1.Materials and Surface Science Institute and Department of Chemical and Environmental SciencesUniversity of LimerickLimerickIreland
  2. 2.SFI-Strategic Research Cluster in Solar Energy ResearchUniversity of LimerickLimerickIreland

Personalised recommendations