Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence


Protein microarrays based on fluorescence detection have been widely utilized for high-throughput functional proteomic analysis. However, a drawback of such assays has been low sensitivity and narrow dynamic range, limiting their capabilities, especially for detecting low abundance biological molecules such as cytokines in human samples. Here, we present fluorescence-enhancing microarrays on plasmonic gold films for multiplexed cytokine detection with up to three orders of magnitude higher sensitivity than on conventional nitrocellulose and glass substrates. Cytokine detection on the gold plasmonic substrate is about one to two orders of magnitude more sensitive than enzyme-linked immunosorbent assay (ELISA) and can be multiplexed. A panel of six cytokines (Vascular endothelial growth factor (VEGF), Interleukin 1β (IL-1β), Interleukin 4 (IL-4), Interleukin 6 (IL-6), Interferon γ (IFN-γ), and Tumor necrosis factor (TNF)) were detected in the culture media of cancer cells. This work establishes a new method of high throughput multiplexed cytokine detection with higher sensitivity and dynamic range than ELISA.

Graphical abstract

This is a preview of subscription content, log in to check access.


  1. [1]

    Oppenheim, J. J.; Rossio, J. L.; Gearing, A. J. H. Clinical Applications of Cytokines: Role in Pathogenesis, Diagnosis, and Therapy; Oxford University Press: New York, 1993.

    Google Scholar 

  2. [2]

    Lequin, R. M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418.

    Article  CAS  Google Scholar 

  3. [3]

    Diaz-Mitoma, F.; Kumar, A.; Karimi, S.; Kryworuchko, M.; Daftarian, M. P.; Creery, W. D.; Filion, L. G.; Cameron, W. Expression of IL-10, IL-4 and interferon-gamma in unstimulated and mitogen-stimulated peripheral blood lymphocytes from HIV-seropositive patients. Clin. Exp. Immunol. 1995, 102, 31–39.

    Article  CAS  Google Scholar 

  4. [4]

    de Jager, W.; te Velthuis, H.; Prakken, B. J.; Kuis, W.; Rijkers, G. T. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin. Vaccine Immunol. 2003, 10, 133–139.

    Article  Google Scholar 

  5. [5]

    Khan, S. S.; Smith, M. S.; Reda, D.; Suffredini, A. F.; McCoy, J. P. Jr. Multiplex bead array assays for detection of soluble cytokines: Comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytom. Part B: Clin. Cytom. 2004, 61B, 35–39.

    Article  CAS  Google Scholar 

  6. [6]

    Dossus, L.; Becker, S.; Achaintre, D.; Kaaks, R.; Rinaldi, S. Validity of multiplex-based assays for cytokine measurements in serum and plasma from “non-diseased” subjects: Comparison with ELISA. J. Immunol. Methods. 2009, 350, 125–132.

    Article  CAS  Google Scholar 

  7. [7]

    Utz, P. J. Multiplexed assays for identification of biomarkers and surrogate markers in systemic lupus erythematosus. Lupus 2004, 13, 304–311.

    Article  CAS  Google Scholar 

  8. [8]

    Robinson, W. H.; Utz, P. J.; Steinman, L. Genomic and proteomic analysis of multiple sclerosis: Opinion. Curr. Opin. Immunol. 2003, 15, 660–667.

    Article  CAS  Google Scholar 

  9. [9]

    Hueber, W.; Kidd, B. A.; Tomooka, B. H.; Lee, B. J.; Bruce, B.; Fries, J. F.; Sønderstrup, G.; Monach, P.; Drijfhout, J. W.; van Venrooij, W. J. et al. Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum. 2005, 52, 2645–2655.

    Article  CAS  Google Scholar 

  10. [10]

    Garren, H.; Robinson, W. H.; Krasulová, E.; Havrdová, E.; Nadj, C.; Selmaj, K.; Losy, J.; Nadj, I.; Radue, E. W.; Kidd, B. A. et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann. Neurol. 2008, 63, 611–620.

    Article  CAS  Google Scholar 

  11. [11]

    Bar-Or, A.; Vollmer, T.; Antel, J.; Arnold, D. L.; Bodner, C. A.; Campagnolo, D.; Gianettoni, J.; Jalili, F.; Kachuck, N.; Lapierre, Y. et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch. Neurol. 2007, 64, 1407–1415.

    Article  Google Scholar 

  12. [12]

    MacBeath, G. Protein microarrays and proteomics. Nat. Genet. 2002, 32, 526–532.

    Article  CAS  Google Scholar 

  13. [13]

    Madoz-Gúrpide, J.; Wang, H.; Misek, D. E.; Brichory, F.; Hanash, S. M. Protein based microarrays: A tool for probing the proteome of cancer cells and tissues. Proteomics 2001, 1, 1279–1287.

    Article  Google Scholar 

  14. [14]

    MacBeath, G.; Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760–1763.

    CAS  Google Scholar 

  15. [15]

    Graf, R.; Friedl, P. Detection of immobilized proteins on nitrocellulose membranes using a biotinylation-dependent system. Anal. Biochem. 1999, 273, 291–297.

    Article  CAS  Google Scholar 

  16. [16]

    Li, Y. W.; Reichert, W. M. Adapting cDNA microarray format to cytokine detection protein arrays. Langmuir 2003, 19, 1557–1566.

    Article  CAS  Google Scholar 

  17. [17]

    Zhu, H.; Snyder, M. Protein arrays and microarrays. Curr. Opin. Chem. Biol. 2001, 5, 40–45.

    Article  CAS  Google Scholar 

  18. [18]

    Lesaicherre, M. L.; Uttamchandani, M.; Chen, G. Y. J.; Yao, S. Q. Developing site-specific immobilization strategies of peptides in a microarray. Bioorg. Med. Chem. Lett. 2002, 12, 2079–2083.

    Article  CAS  Google Scholar 

  19. [19]

    Schweitzer, B.; Roberts, S.; Grimwade, B.; Shao, W. P.; Wang, M. J.; Fu, Q.; Shu, Q. P.; Laroche, I.; Zhou, Z. M.; Tchernev, V. T. et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol. 2002, 20, 359–365.

    Article  CAS  Google Scholar 

  20. [20]

    Tabakman, S. M.; Chen, Z.; Casalongue, H. S.; Wang, H. L.; Dai, H. J. A new approach to solution-phase gold seeding for SERS substrates. Small 2011, 7, 499–505.

    Article  CAS  Google Scholar 

  21. [21]

    Hong, G. S.; Tabakman, S. M.; Welsher, K.; Wang, H. L.; Wang, X. R.; Dai, H. J. Metal-enhanced fluorescence of carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 15920–15923.

    Article  CAS  Google Scholar 

  22. [22]

    Hong, G. S.; Tabakman, S. M.; Welsher, K.; Chen, Z.; Robinson, J. T.; Wang, H. L.; Zhang, B.; Dai, H. J. Nearinfrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew. Chem. Int. Edit. 2011, 50, 4644–4648.

    Article  CAS  Google Scholar 

  23. [23]

    Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H. L.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A. et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2011, 2, 466.

    Article  Google Scholar 

  24. [24]

    Hong, G. S.; Wu, J. Z.; Robinson, J. T.; Wang, H. L.; Zhang, B.; Dai, H. J. Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nat. Commun. 2012, 3, 700.

    Article  Google Scholar 

  25. [25]

    Canney, P. A.; Moore, M.; Wilkinson, P. M.; James, R. D. Ovarian cancer antigen CA125: A prospective clinical assessment of its role as a tumour marker. Br. J. Cancer 1984, 50, 765–769.

    Article  CAS  Google Scholar 

  26. [26]

    Moertel, C. G.; Fleming, T. R.; Macdonald, J. S.; Haller, D. G.; Laurie, J. A.; Tangen, C. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA. 1993, 270, 943–947.

    Article  CAS  Google Scholar 

  27. [27]

    Gorelik, E.; Landsittel, D. P.; Marrangoni, A. M.; Modugno, F.; Velikokhatnaya, L.; Winans, M. T.; Bigbee, W. L.; Herberman, R. B.; Lokshin, A. E. Multiplexed immunobeadbased cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 981–987.

    Article  CAS  Google Scholar 

  28. [28]

    Foti, E.; Ferrandina, G.; Martucci, R.; Romanini, M. E.; Benedetti Panici, P.; Testa, U.; Mancuso, S.; Scambia, G. IL-6, M-CSF and IAP cytokines in ovarian cancer: Simultaneous assessment of serum levels. Oncology 1999, 57, 211–215.

    Article  CAS  Google Scholar 

  29. [29]

    Gadducci, A.; Ferdeghini, M.; Castellani, C.; Annicchiarico, C.; Gagetti, O.; Prontera, C.; Bianchi, R.; Facchini, V. Serum levels of tumor necrosis factor (TNF), soluble receptors for TNF (55- and 75-kDa sTNFr), and soluble CD14 (sCD14) in epithelial ovarian cancer. Gynecol. Oncol. 1995, 58, 184–188.

    Article  CAS  Google Scholar 

  30. [30]

    Gadducci, A.; Ferdeghini, M.; Fanucchi, A.; Annicchiarico, C.; Ciampi, B.; Prontera, C.; Genazzani, A. R. Serum preoperative vascular endothelial growth factor (VEGF) in epithelial ovarian cancer: Relationship with prognostic variables and clinical outcome. Anticancer Res. 1999, 19, 1401–1405.

    CAS  Google Scholar 

  31. [31]

    Penson, R. T.; Kronish, K.; Duan, Z.; Feller, A. J.; Stark, P.; Cook, S. E.; Duska, L. R.; Fuller, A. F.; Goodman, A. K.; Nikrui, N. et al. Cytokines IL-1β, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFα in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Int. J. Gynecol. Cancer 2000, 10, 33–41.

    Article  Google Scholar 

  32. [32]

    Nilsson, M. B.; Langley, R. R.; Fidler, I. J. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 2005, 65, 10794–10800.

    Article  CAS  Google Scholar 

  33. [33]

    Bast, R. C. Jr. Status of tumor markers in ovarian cancer screening. J. Clin. Oncol. 2003, 21, 200s–205s.

    Article  Google Scholar 

  34. [34]

    Gorelik, E.; Landsittel, D. P.; Marrangoni, A. M.; Modugno, F.; Velikokhatnaya, L.; Winans, M. T.; Bigbee, W. L.; Herberman, R. B.; Lokshin, A. E. Multiplexed immunobeadbased cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol. Biomarkers prev. 2005, 14, 981–987.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hongjie Dai.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, B., Price, J., Hong, G. et al. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res. 6, 113–120 (2013).

Download citation


  • microarray
  • cytokine
  • plasmonic
  • multiplex
  • near infrared fluorescence