Nano Research

, Volume 6, Issue 1, pp 38–46 | Cite as

Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance

  • Kai Zhang
  • Qing Zhao
  • Zhanliang Tao
  • Jun ChenEmail author
Research Article


Carbon-sulfur composites as the cathode of rechargeable Li-S batteries have shown outstanding electrochemical performance for high power devices. Here, we report the promising electrochemical charge-discharge properties of a carbon-sulfur composite, in which sulfur is impregnated in porous hollow carbon spheres (PHCSs) via a melt-diffusion method. Instrumental analysis shows that the PHCSs, which were prepared by a facile template strategy, are characterized by high specific surface area (1520 m2·g−1), large pore volume (2.61 cm3·g−1), broad pore size distribution from micropores to mesopores, and high electronic conductivity (2.22 S·cm−1). The carbon-sulfur composite with a sulfur content of 50.2 wt.% displays an initial discharge capacity of 1450 mA·h·g−1 (which is 86.6% of the theoretical specific capacity) and a reversible discharge capacity of 1357 mA·h·g−1 after 50 cycles at 0.05 C charge-discharge rate. At a higher rate of 0.5C, the capacity stabilized at around 800 mA·h·g−1 after 30 cycles. The results illustrate that the porous carbon-sulfur composites with hierarchically porous structure have potential application as the cathode of Li-S batteries because of their effective improvement of the electronic conductivity, the repression of the volume expansion, and the reduction of the shuttling loss.


porous hollow carbon spheres mesopous/microporous multi-scale carbon-sulfur composite cathode Li-S batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kim, J.; Lee, D. J.; Jung, H. G.; Sun, Y. K.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.201200689.Google Scholar
  2. [2]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  3. [3]
    Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nano-structured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  4. [4]
    Zheng, G.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.CrossRefGoogle Scholar
  5. [5]
    Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X.; Qiu, Y.; Yang, S. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 2012, 5, 726–738.CrossRefGoogle Scholar
  6. [6]
    Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H. K. Sulfur-graphene composite for rechargeable lithium batteries. J. Power Sources 2011, 196, 7030–7034.CrossRefGoogle Scholar
  7. [7]
    Yang, Y.; Yu, G.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 2011, 5, 9187–9193.CrossRefGoogle Scholar
  8. [8]
    Xiao, X.; Lu, J.; Li, Y. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.CrossRefGoogle Scholar
  9. [9]
    Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.CrossRefGoogle Scholar
  10. [10]
    Liang, C.; Dudney, N. J.; Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 2009, 21, 4724–4730.CrossRefGoogle Scholar
  11. [11]
    Fu, Y.; Manthiram, A. Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv. 2012, 2, 5927–5929.CrossRefGoogle Scholar
  12. [12]
    Ji, L.; Rao, M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059.CrossRefGoogle Scholar
  13. [13]
    He, X.; Ren, J.; Wang, L.; Pu, W.; Jiang, C.; Wan, C. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries. J. Power Sources 2009, 190, 154–156.CrossRefGoogle Scholar
  14. [14]
    Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904–5908.CrossRefGoogle Scholar
  15. [15]
    Wu, F.; Chen, J.; Chen, R.; Wu, S.; Li, L.; Chen, S.; Zhao, T. Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 2011, 115, 6057–6063.CrossRefGoogle Scholar
  16. [16]
    Lin, Z.; Liu, Z.; Fu, W.; Dudney, N. J.; Liang, C. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2012, DOI: 10.1002/adfm.201200696.Google Scholar
  17. [17]
    Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.CrossRefGoogle Scholar
  18. [18]
    Guo, J.; Xu, Y.; Wang, C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011, 11, 4288–4294.CrossRefGoogle Scholar
  19. [19]
    Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 2011, 23, 5641–5644.CrossRefGoogle Scholar
  20. [20]
    Wei, S.; Zhang, H.; Huang, Y.; Wang, W.; Xia, Y.; Yu, Z. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy Environ. Sci. 2011, 4, 736–740.CrossRefGoogle Scholar
  21. [21]
    Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 2012, 48, 1233–1235.CrossRefGoogle Scholar
  22. [22]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  23. [23]
    Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur Cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  24. [24]
    Zhang, X.; Cheng, F.; Zhang, K.; Liang, Y.; Yang, S.; Liang, J.; Chen, J. Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro-nano structure and high rate capability. RSC Adv. 2012, 2, 5669–5675.CrossRefGoogle Scholar
  25. [25]
    Li, C.; Zhang, S.; Cheng, F.; Ji, W.; Chen, J. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Res. 2008, 1, 242–248.CrossRefGoogle Scholar
  26. [26]
    Li, X.; Cao, Y.; Qi, W.; Saraf, L. V.; Xiao, J.; Nie, Z.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J. Mater. Chem. 2011, 21, 16603–16610.CrossRefGoogle Scholar
  27. [27]
    Cao, Y.; Li, X.; Aksay, I. A.; Lemmon, J.; Nie, Z.; Yang, Z.; Liu, J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2011, 13, 7660–7665.CrossRefGoogle Scholar
  28. [28]
    Cheng, F.; Wang, H.; Zhu, Z.; Wang, Y.; Zhang, T.; Tao, Z.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 2011, 4, 3668–3675.CrossRefGoogle Scholar
  29. [29]
    Li, N.; Zheng, M.; Lu, H.; Hu, Z.; Shen, C.; Chang, X.; Ji, G.; Cao, J.; Shi, Y. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun. 2012, 48, 4106–4108.CrossRefGoogle Scholar
  30. [30]
    Yuan, L.; Yuan, H.; Qiu, X.; Chen, L.; Zhu, W. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J. Power Sources 2009, 189, 1141–1146.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry CollegeNankai UniversityTianjinChina

Personalised recommendations