Nano Research

, Volume 5, Issue 12, pp 854–862

Strain-induced D band observed in carbon nanotubes

  • Chia-Chi Chang
  • Chun-Chung Chen
  • Wei-Hsuan Hung
  • I. -Kai Hsu
  • Marcos A. Pimenta
  • Stephen B. Cronin
Research Article


We report the emergence of the D band Raman mode in single-walled carbon nanotubes under large axial strain. The D to G mode Raman intensity ratio (ID/IG) is observed to increase with strain quadratically by more than a factor of 100-fold. Up to 5% strain, all changes in the Raman spectra are reversible. The emergence of the D band, instead, arises from the reversible and elastic symmetry-lowering of the sp2 bonds structure. Beyond 5%, we observe irreversible changes in the Raman spectra due to slippage of the nanotube from the underlying substrate, however, the D band intensity resumes its original pre-strain intensity, indicating that no permanent defects are formed.


SWCNTs Raman D band defects strain sp2 bond 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_269_MOESM1_ESM.pdf (212 kb)
Supplementary material, approximately 214 KB.


  1. [1]
    Sazonova, V.; Yalsh, Y.; Üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.CrossRefGoogle Scholar
  2. [2]
    Chiu, H. -Y.; Hung, P.; Postma, H. W. C.; Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 2008, 8, 4342–4346.CrossRefGoogle Scholar
  3. [3]
    Yakobson, B.; Smalley, R. Fullerene nanotubes: C1,000,000 and beyond. Am. Scientist 1997, 85, 324–337.Google Scholar
  4. [4]
    Pugno, N. M. On the strength of the carbon nanotube-based space elevator cable: From nanomechanics to megamechanics. J. of Phys.: Condens Matter 2006, 18, S1971–S1990.CrossRefGoogle Scholar
  5. [5]
    Chang, C.-C.; Hsu, I. K.; Aykol, M.; Hung, W.-H.; Chen, C.-C.; Cronin, S. B. A new lower limit for the ultimate breaking strain of carbon nanotubes. ACS Nano 2010, 4, 5095–5100.CrossRefGoogle Scholar
  6. [6]
    Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.CrossRefGoogle Scholar
  7. [7]
    Zhao, Q. Z.; Nardelli, M. B.; Bernholc, J. Ultimate strength of carbon nanotubes: A theoretical study. Phys. Rev. B 2002, 65, 144105.CrossRefGoogle Scholar
  8. [8]
    Dumitrica, T.; Hua, M.; Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 6105–6109.CrossRefGoogle Scholar
  9. [9]
    Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 1999, 59, R6585–R6588.CrossRefGoogle Scholar
  10. [10]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  11. [11]
    Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.CrossRefGoogle Scholar
  12. [12]
    Hulman, M.; Skákalová, V.; Roth, S.; Kuzmany, H. Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by gamma rays. J. Appl. Phys. 2005, 98, 024311.CrossRefGoogle Scholar
  13. [13]
    Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.CrossRefGoogle Scholar
  14. [14]
    Canccądo, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.CrossRefGoogle Scholar
  15. [15]
    Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified singlewall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.CrossRefGoogle Scholar
  16. [16]
    Kumar, R.; Aykol, M.; Ryu, K.; Zhou, C. W.; Cronin, S. B. Top-down lithographic method for inducing strain in carbon nanotubes. J. Appl. Phys. 2009, 106, 014306.CrossRefGoogle Scholar
  17. [17]
    Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.CrossRefGoogle Scholar
  18. [18]
    Frogley, M. D.; Zhao, Q.; Wagner, H. D. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys. Rev. B 2002, 65, 113413.CrossRefGoogle Scholar
  19. [19]
    Lucas, M.; Young, R. J. Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites. Phys. Rev. B 2004, 69, 085405.CrossRefGoogle Scholar
  20. [20]
    Kumar, R.; Cronin, S. B. Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling. Phys. Rev. B 2007, 75, 155421.CrossRefGoogle Scholar
  21. [21]
    Son, H.; Samsonidze, G. G.; Kong, J.; Zhang, Y. Y.; Duan, X. J.; Zhang, J.; Liu, Z. F.; Dresselhaus, M. S. Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 253113.CrossRefGoogle Scholar
  22. [22]
    Huang, M.; Wu, Y.; Chandra, B.; Yan, H.; Shan, Y.; Heinz, T. F.; Hone, J. Direct measurement of strain-induced changes in the band structure of carbon nanotubes. Phys. Rev. Lett. 2008, 100, 136803.CrossRefGoogle Scholar
  23. [23]
    Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Matinaga, F. M.; Dantas, M. S. S.; Pimenta, M. A. Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Phys. Rev. B 2001, 63, 245416.CrossRefGoogle Scholar
  24. [24]
    Cao, J.; Wang, Q.; Dai, H. J. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.CrossRefGoogle Scholar
  25. [25]
    Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of doubleresonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 2011, 84, 035433.CrossRefGoogle Scholar
  26. [26]
    Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.CrossRefGoogle Scholar
  27. [27]
    Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.CrossRefGoogle Scholar
  28. [28]
    Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7304–7308.CrossRefGoogle Scholar
  29. [29]
    Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K. S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Kavan, L.; Galiotis, C. Raman 2D-band splitting in graphene: Theory and experiment. ACS Nano 2011, 5, 2231–2239.CrossRefGoogle Scholar
  30. [30]
    Huang, M.; Yan, H.; Heinz, T. F.; Hone, J. Probing straininduced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 2010, 10, 4074–4079.CrossRefGoogle Scholar
  31. [31]
    Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y.; Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J. Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch? Phys. Rev. Lett. 2000, 84, 4950–4953.CrossRefGoogle Scholar
  32. [32]
    Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S.-Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.CrossRefGoogle Scholar
  33. [33]
    Maune, H.; Bockrath, M. Elastomeric carbon nanotube circuits for local strain sensing. Appl. Phys. Lett. 2006, 89, 173131.CrossRefGoogle Scholar
  34. [34]
    Yang, W.; Wang, R.-Z.; Yan, H. Strain-induced Raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations. Phys. Rev. B 2008, 77, 195440.CrossRefGoogle Scholar
  35. [35]
    Wu, G.; Zhou, J.; Dong, J. M. Raman modes of the deformed single-wall carbon nanotubes. Phys. Rev. B 2005, 72, 115411.CrossRefGoogle Scholar
  36. [36]
    Gao, B.; Jiang, L.; Ling, X.; Zhang, J. F.; Liu, Z. Chiralitydependent Raman frequency variation of single-walled carbon nanotubes under uniaxial strain. J. Phys. Chem. C 2008, 112, 20123–20125.CrossRefGoogle Scholar
  37. [37]
    Jorio, A.; Fantini, C.; Dantas, M. S. S.; Pimenta, M. A.; Souza Filho, A. G.; Samsonidze, G. G.; Brar, V. W.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Saito, R. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B 2002, 66, 115411.CrossRefGoogle Scholar
  38. [38]
    Righi, A.; Costa, S. D.; Chacham, H.; Fantini, C.; Venezuela, P.; Magnuson, C.; Colombo, L.; Bacsa, W. S.; Ruoff, R. S.; Pimenta, M. A. Graphene Moiré patterns observed by umklapp double-resonance Raman scattering. Phys. Rev. B 2011, 84, 241409.CrossRefGoogle Scholar
  39. [39]
    Araujo, P. T.; Barbosa Neto, N. M.; Chacham, H.; Carara, S. S.; Soares, J. S.; Souza, A. D.; Cançado, L. G.; de Oliveira, A. B.; Batista, R. J. C.; Joselevich, E.; Dresselhaus, M. S.; Jorio, A. In situ atomic force microscopy tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes. Nano Lett. 2012, 12, 4110–4116.CrossRefGoogle Scholar
  40. [40]
    Stone, A. J.; Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501–503.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chia-Chi Chang
    • 1
  • Chun-Chung Chen
    • 2
  • Wei-Hsuan Hung
    • 4
  • I. -Kai Hsu
    • 3
  • Marcos A. Pimenta
    • 5
  • Stephen B. Cronin
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of Materials Science and EngineeringFeng Chia UniversityTaichungTaiwan
  5. 5.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations