Nano Research

, Volume 5, Issue 12, pp 845–853 | Cite as

Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries

Research Article


Si has been considered as a promising anode material but its practical application has been severely hindered due to poor cyclability caused by the large volume change during charge/discharge. A new and effective protocol has been developed to construct Si nanoparticle/graphene electrodes with a favorable structure to alleviate this problem. Starting from a stable suspension of Si nanoparticles and graphene oxide in ethanol, spin-coating can be used as a facile method to cast a spin-coated Si nanoparticle/graphene (SC-Si/G) film, in which graphene can act as both an efficient electronic conductor and effective binder with no need for other binders such as polyvinylidenefluoride (PVDF) or polytetrafluoroethylene (PTFE). The prepared SC-Si/G electrode can achieve a high-performance as an anode for lithium-ion batteries benefiting from the following advantages: i) the graphene enhances the electronic conductivity of Si nanoparticles and the void spaces between Si nanoparticles facilitate the lithium ion diffusion, ii) the flexible graphene and the void spaces can effectively cushion the volume expansion of Si nanoparticles. As a result, the binder-free electrode shows a high capacity of 1611 mA·h·g−1 at 1 A·g−1 after 200 cycles, a superior rate capability of 648 mA·h·g−1 at 10 A·g−1, and an excellent cycle life of 200 cycles with 74% capacity retention.


Spin-coating binder-free anode silicon nanoparticles graphene lithium-ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_268_MOESM1_ESM.pdf (464 kb)
Supplementary material, approximately 466 KB.


  1. [1]
    Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805–815.CrossRefGoogle Scholar
  2. [2]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  3. [3]
    Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.CrossRefGoogle Scholar
  4. [4]
    Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.CrossRefGoogle Scholar
  5. [5]
    Ji, H. X.; Zhang, L. L.; Pettes, M. T.; Li, H. F.; Chen, S. S.; Shi, L.; Piner, R.; Ruoff, R. S. Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes. Nano Lett. 2012, 12, 2446–2451.CrossRefGoogle Scholar
  6. [6]
    Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.CrossRefGoogle Scholar
  7. [7]
    Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367.CrossRefGoogle Scholar
  8. [8]
    Wen, Z.; Wang, Q.; Zhang, Q.; Li, J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772–2778.CrossRefGoogle Scholar
  9. [9]
    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.CrossRefGoogle Scholar
  10. [10]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  11. [11]
    Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.CrossRefGoogle Scholar
  12. [12]
    Sun, X. M.; Liu, J. F.; Li, Y. D. Oxide@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mater. 2006, 18, 3486–3494.CrossRefGoogle Scholar
  13. [13]
    Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Casalongue, H. S.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem. Int. Ed. 2011, 50, 7364–7368.CrossRefGoogle Scholar
  14. [14]
    Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 Nanocrystals. Nano Res. 2010, 3, 1–7.CrossRefGoogle Scholar
  15. [15]
    Xing, Z.; Ju, Z. C.; Yang, J.; Xu, H. Y.; Qian, Y. T. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 2012, 5, 477–485.CrossRefGoogle Scholar
  16. [16]
    Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.CrossRefGoogle Scholar
  17. [17]
    Xiao, X.; Lu, J.; Li, Y. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.CrossRefGoogle Scholar
  18. [18]
    Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.CrossRefGoogle Scholar
  19. [19]
    Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 2010, 22, 2247–2250.CrossRefGoogle Scholar
  20. [20]
    Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 1999, 2, 547–549.CrossRefGoogle Scholar
  21. [21]
    Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.CrossRefGoogle Scholar
  22. [22]
    Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.CrossRefGoogle Scholar
  23. [23]
    Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Müller, J. O.; Schlögl, R.; Antonietti, M.; Maier, J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2008, 47, 1645–1649.CrossRefGoogle Scholar
  24. [24]
    Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067–4070.CrossRefGoogle Scholar
  25. [25]
    Cakan, R. D.; Titirici, M. M.; Antonietti, M.; Cui, G. L.; Maier, J.; Hu, Y. S. Hydrothermal carbon spheres containing silicon nanoparticles: Synthesis and lithium storage performance. Chem. Commun. 2008, 3759–3761.Google Scholar
  26. [26]
    Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.CrossRefGoogle Scholar
  27. [27]
    Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012, 12, 802–807.CrossRefGoogle Scholar
  28. [28]
    Ng, S. H.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 2006, 45, 6896–6899.CrossRefGoogle Scholar
  29. [29]
    Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027.CrossRefGoogle Scholar
  30. [30]
    Xiang, H. F.; Zhang, K.; Ji, G.; Lee, J. Y.; Zou, C. J.; Chen, X. D.; Wu, J. S. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 2011, 49, 1787–1796.CrossRefGoogle Scholar
  31. [31]
    Jia, H. P.; Gao, P. F.; Yang, J.; Wang, J. L.; Nuli, Y.; Yang, Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 2011, 1, 1036–1039.CrossRefGoogle Scholar
  32. [32]
    Su, L. W.; Zhou, Z.; Ren, M. M. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem. Commun. 2010, 46, 2590–2592.CrossRefGoogle Scholar
  33. [33]
    Yin, Y. X.; Xin, S.; Wan, L. J.; Li, C. J.; Guo, Y. G. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 14148–14154.CrossRefGoogle Scholar
  34. [34]
    Chen, P. C.; Xu, J.; Chen, H. T.; Zhou, C. W. Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Res. 2011, 4, 290–296.CrossRefGoogle Scholar
  35. [35]
    Esmanski, A.; Ozin, G. A. Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Adv. Funct. Mater. 2009, 19, 1999–2010.CrossRefGoogle Scholar
  36. [36]
    Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415–4420.CrossRefGoogle Scholar
  37. [37]
    Evanoff, K.; Khan, J.; Balandin, A. A.; Magasinski, A.; Ready, W. J.; Fuller, T. F.; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture. Adv. Mater. 2012, 24, 533–537.CrossRefGoogle Scholar
  38. [38]
    Lu, Z. Y.; Zhu, J. X.; Sim, D.; Zhou, W. W.; Shi, W. H.; Hng, H. H.; Yan, Q. Y. Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem. Mater. 2011, 23, 5293–5295.CrossRefGoogle Scholar
  39. [39]
    Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in siliver-treated nanoscale hollow porous silicon particles. Angew. Chem. Int. Ed. 2012, 51, 2409–2413.CrossRefGoogle Scholar
  40. [40]
    Gohier, A.; Laïk, B.; Kim, K. H.; Maurice, J. L.; Pereira-Ramos, J. P.; Cojocaru, C. S.; Van, P. T. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 2012, 24, 2592–2597.CrossRefGoogle Scholar
  41. [41]
    Zhou, X. S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem. Commun. 2012, 48, 2198–2200.CrossRefGoogle Scholar
  42. [42]
    Xin, X.; Zhou, X. F.; Wang, F.; Yao, X. Y.; Xu, X. X.; Zhu, Y. M.; Liu, Z. P. A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J. Mater. Chem. 2012, 22, 7724–7730.CrossRefGoogle Scholar
  43. [43]
    Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. In-plane vacancy-enabled high-power Si-graphene composite electrolyte for lithium-ion batteries. Adv. Energy Mater. 2011, 1, 1079–1084.CrossRefGoogle Scholar
  44. [44]
    Tao, H. C.; Fan, L. Z.; Mei, Y. F.; Qu, X. H. Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem. Commun. 2011, 13, 1332–1335.CrossRefGoogle Scholar
  45. [45]
    Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.CrossRefGoogle Scholar
  46. [46]
    Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.CrossRefGoogle Scholar
  47. [47]
    Bian, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145–E149.CrossRefGoogle Scholar
  48. [48]
    Jia, X.; Chen, Z.; Suwarnasarn, A.; Rice, L.; Wang, X. L.; Sohn, H.; Zhang, Q.; Wu, B. M.; Wei, F.; Lu, Y. F. High-performance flexible lithium-ion electrode based on robust network architecture. Energy Environ. Sci. 2012, 5, 6845–6849.CrossRefGoogle Scholar
  49. [49]
    Jo, G.; Choi, I.; Ahn, H.; Park, M. J. Binder-free Ge nanoparticles-carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability. Chem. Commun. 2012, 48, 3987–3989.CrossRefGoogle Scholar
  50. [50]
    Sun, Y. M.; Hu, X. L.; Yu, J. C.; Li, Q.; Luo, W.; Yuan, L. X.; Zhang, W. X.; Huang, Y. H. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a bindr-free anode for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2870–2877.CrossRefGoogle Scholar
  51. [51]
    Xu, G. H.; Zheng, C.; Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Nie, J. Q.; Wang, X. H.; Wei, F. Binder-free activitated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011, 4, 870–881.CrossRefGoogle Scholar
  52. [52]
    Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800–12804.CrossRefGoogle Scholar
  53. [53]
    Zhou, X. S.; Wu, T. B.; Hu, B. J.; Yang, G. Y.; Han, B. X. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun. 2010, 46, 3663–3665.CrossRefGoogle Scholar
  54. [54]
    Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.CrossRefGoogle Scholar
  55. [55]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  56. [56]
    Zhou, X. S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2012, 2, 1086–1090.CrossRefGoogle Scholar
  57. [57]
    Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394–3398.CrossRefGoogle Scholar
  58. [58]
    Jiang, P.; McFarland, M. J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 2004, 126, 13778–13786.CrossRefGoogle Scholar
  59. [59]
    Wang, D.; Möhwald, H. Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv. Mater. 2004, 16, 244–247.CrossRefGoogle Scholar
  60. [60]
    Liu, Y. S.; Wan, X. J.; Wang, F.; Zhu, J. Y.; Long, G. K.; Tian, J. G.; You, J. B.; Yang, Y.; Chen, Y. S. Spin-coated small molecules for high performance solar cells. Adv. Energy Mater. 2011, 1, 771–775.CrossRefGoogle Scholar
  61. [61]
    Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.CrossRefGoogle Scholar
  62. [62]
    Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaosi Zhou
    • 1
  • An-Min Cao
    • 1
  • Li-Jun Wan
    • 1
  • Yu-Guo Guo
    • 1
  1. 1.Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of ChemistryChinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations