Nano Research

, Volume 5, Issue 11, pp 805–814 | Cite as

Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices

  • Choong-Heui Chung
  • Tze-Bin Song
  • Brion Bob
  • Rui Zhu
  • Yang Yang


Although silver nanowire meshes have already demonstrated sheet resistance and optical transmittance comparable to those of sputter-deposited indium tin oxide thin films, other critical issues including surface morphology, mechanical adhesion and flexibility have to be addressed before widely employing silver nanowire networks as transparent conductors in optoelectronic devices. Here, we demonstrate the efficacy of low temperature solution-processed flexible metal nanowire networks embedded in a conductive metal oxide nanoparticle matrix as transparent conductors, and investigate their microstructural, optoelectronic, and mechanical properties in attempting to resolve nearly all of the technological issues imposed on silver nanowire networks. Surrounding silver nanowires by conductive indium tin oxide nanoparticles offers low wire to wire junction resistance, smooth surface morphology, and excellent mechanical adhesion and flexibility while maintaining the high transmittance and the low sheet resistance. In addition, we discuss the relationship between sheet resistance and transmittance in the silver nanowire composite transparent conductors and their maximum achievable transmittance. Although we have selected silver nanowires and indium tin oxide nanoparticle matrix as demonstration materials, we anticipate that various metal nanowire meshes embedded in various conductive metal oxide nanoparticle matrices can effectively serve as transparent conductors for a wide variety of optoelectronic devices owing to their superior performance, simple, cost-effective, and gentle processing.

Graphical abstract


Transparent conductor silver nanowire conductive metal oxide nanoparticle indium tin oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. Low resistivity indium-tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering. J. Vac. Sci. Technol. A 1990, 8, 1399–1402.CrossRefGoogle Scholar
  2. [2]
    Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A 1990, 8, 1403–1406.CrossRefGoogle Scholar
  3. [3]
    Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Li, Z. G.; Pillione, L. J.; Messier, R. F. Low-stress indium-tin-oxide thin films rf magnetron sputtered on polyester substrates. Appl. Phys. Lett. 2002, 81, 1800–1802.CrossRefGoogle Scholar
  4. [4]
    Gu, G.; Bulovic, V.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Transparent organic light emitting devices. Appl. Phys. Lett. 1996, 68, 2606–2608.CrossRefGoogle Scholar
  5. [5]
    Burrows, P. E.; Gu, G.; Forrest, S. R.; Vicenzi, E. P.; Zhou, T. X. Semitransparent cathodes for organic light emitting devices. J. Appl. Phys. 2000, 87, 3080–3085.CrossRefGoogle Scholar
  6. [6]
    Suzuki, H.; Hikita, M. Organic light-emitting diodes with radio frequency sputter-deposited electron injecting electrodes. Appl. Phys. Lett. 1996, 68, 2276–2278.CrossRefGoogle Scholar
  7. [7]
    Chung, C. H.; Ko, Y. W.; Kim, Y. H.; Sohn, C. Y.; Chu, H. Y.; Lee, J. H. Improvement in performance of transparent organic light-emitting diodes with increasing sputtering power in the deposition of indium tin oxide cathode. Appl. Phys. Lett., 2005, 86, 093504.CrossRefGoogle Scholar
  8. [8]
    Chung, C. H.; Ko, Y. W.; Kim, Y. H.; Sohn, C. Y.; Chu, H. Y.; Park, S. H. K.; Lee, J. H. Radio frequency magnetron sputter-deposited indium tin oxide for use as a cathode in transparent organic light-emitting diode. Thin Solid Films 2005, 491, 294–297.CrossRefGoogle Scholar
  9. [9]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.CrossRefGoogle Scholar
  10. [10]
    Hu, L. B.; Wu, H.; Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011, 36, 760–765.CrossRefGoogle Scholar
  11. [11]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.CrossRefGoogle Scholar
  12. [12]
    Gaynor, W.; Lee, J. Y.; Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 2010, 4, 30–34.CrossRefGoogle Scholar
  13. [13]
    Liu, C. H.; Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 2011, 6, 75.CrossRefGoogle Scholar
  14. [14]
    Yang, L. Q.; Zhang, T.; Zhou, H. X.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces, 2011, 3, 4075–4084.CrossRefGoogle Scholar
  15. [15]
    Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249.CrossRefGoogle Scholar
  16. [16]
    Lu, Y. C.; Chou, K. S. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology 2010, 21, 215707.CrossRefGoogle Scholar
  17. [17]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.CrossRefGoogle Scholar
  18. [18]
    Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.CrossRefGoogle Scholar
  19. [19]
    Madaria, A. R.; Kumar, A.; Zhou, C. W. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.CrossRefGoogle Scholar
  20. [20]
    Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.CrossRefGoogle Scholar
  21. [21]
    Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.CrossRefGoogle Scholar
  22. [22]
    Leem, D. S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D. C.; de Mello, J. C. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371–4375.CrossRefGoogle Scholar
  23. [23]
    Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484–4488.CrossRefGoogle Scholar
  24. [24]
    Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.CrossRefGoogle Scholar
  25. [25]
    Yu, Z. B.; Zhang, Q. W.; Li, L.; Chen, Q.; Niu, X. F.; Liu, J.; Pei, Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664–668.CrossRefGoogle Scholar
  26. [26]
    Zhu, R.; Chung, C. H.; Cha, K. C.; Yang, W. B.; Zheng, Y. B.; Zhou, H. P.; Song, T. B.; Chen, C. C.; Weiss. P. S.; Li, G.; Yang, Y. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 2011, 5, 9877–9882.CrossRefGoogle Scholar
  27. [27]
    Chung, C. H.; Song, T. B.; Bob, B.; Zhu, R.; Duan, H. S.; Yang, Y. Silver nanowire composite window layers for fully solution-deposited thin film photovoltaic devices. Adv. Mater. 2012, 24, 5499–5504.CrossRefGoogle Scholar
  28. [28]
    Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Choong-Heui Chung
    • 1
  • Tze-Bin Song
    • 1
  • Brion Bob
    • 1
  • Rui Zhu
    • 1
  • Yang Yang
    • 1
  1. 1.Department of Materials Science and Engineering and California NanoSystems InstituteUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations