Skip to main content

A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries

Abstract

Sulfur-reduced graphene oxide composite (SGC) materials with uniformly dispersed sulfur on reduced graphene oxide sheets have been prepared by a simple aqueous one-pot synthesis method, in which the formation of the composite is achieved through the simultaneous oxidation of sulfide and reduction of graphene oxide. The synthesis process has been tracked ex situ by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy, which both confirm that the majority of graphene oxide has been reduced during the synthesis reaction. The sulfur contents in the SGC, determined by thermogravimetry and elementary analysis, have been adjusted in the range from 20.9 to 72.5 wt.%. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images reveal that most of the sulfur is uniformly dispersed on the reduced graphene oxide sheets, for which no sulfur in particulate form could be observed. The SGC materials have been tested as the cathode of rechargeable lithium-sulfur (Li-S) batteries, and demonstrated a high reversible capacity and good cycleability. The SGC-63.6%S can deliver a reversible capacity as high as 804 mA·h/g after 80 cycles of charge/discharge at a current density of 312 mA/g (ca. 0.186 C), and 440 mA·h/g after 500 cycles at 1250 mA/g (ca. 0.75 C).

This is a preview of subscription content, access via your institution.

References

  1. Wang, J. L.; Yang, J.; Wan, C. R.; Du, K.; Xie, J. Y.; Xu, N. X. Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 2003, 13, 487–492.

    Article  CAS  Google Scholar 

  2. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.

    Article  CAS  Google Scholar 

  3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  4. Cheon, S. E.; Choi, S. S.; Han, J. S.; Choi, Y. S.; Jung, B. H.; Lim, H. S. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J. Electrochem. Soc. 2004, 151, A2067–A2073.

    Article  CAS  Google Scholar 

  5. Choi, Y. S.; Kim, S.; Choi, S. S.; Han, J. S.; Kim, J. D.; Jeon, S. E.; Jung, B. H. Effect of cathode component on the energy density of lithium-sulfur battery. Electrochim. Acta 2004, 50, 833–835.

    Article  CAS  Google Scholar 

  6. Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969–A1976.

    Article  CAS  Google Scholar 

  7. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Edit. 2011, 50, 5904–5908.

    Article  CAS  Google Scholar 

  8. Ryu, H. S.; Ahn, H. J.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Nam, T. H.; Kim, J. U.; Cho, G. B. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J. Power Sources 2006, 163, 201–206.

    Article  CAS  Google Scholar 

  9. Kim, S.; Jung, Y. J.; Lim, H. S. The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes. Electrochim. Acta 2004, 50, 889–892.

    Article  CAS  Google Scholar 

  10. Kim, S.; Jung, Y. J.; Park, S. J. Effects of imidazolium salts on discharge performance of rechargeable lithium-sulfur cells containing organic solvent electrolytes. J. Power Sources 2005, 152, 272–277.

    Article  CAS  Google Scholar 

  11. Ryu, H. S.; Ahn, H. J.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Nam, T. H. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim. Acta 2006, 52, 1563–1566.

    Article  CAS  Google Scholar 

  12. Choi, J. W.; Kim, J. K.; Cheruvally, G.; Ahn, J. H.; Ahn, H. J.; Kim, K. W. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 2007, 52, 2075–2082.

    Article  CAS  Google Scholar 

  13. Gao, J.; Lowe, M. A.; Kiya, Y.; Abruna, H. D. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in situ X-ray absorption spectroscopic studies. J. Phys. Chem. C 2011, 115, 25132–25137.

    Article  CAS  Google Scholar 

  14. Zhu, X. J.; Wen, Z. Y.; Gu, Z. H.; Lin, Z. X. Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. J. Power Sources 2005, 139, 269–273.

    Article  CAS  Google Scholar 

  15. Lee, Y. M.; Choi, N. S.; Park, J. H.; Park, J. K. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J. Power Sources 2003, 119, 964–972.

    Article  Google Scholar 

  16. Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energ. Environ. Sci. 2010, 3, 1531–1537.

    Article  CAS  Google Scholar 

  17. Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

    Article  CAS  Google Scholar 

  18. Yin, L. C.; Wang, J. L.; Yang, J.; Nuli, Y. N. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J. Mater. Chem. 2011, 21, 6807–6810.

    Article  CAS  Google Scholar 

  19. Wu, F.; Chen, J. Z.; Chen, R. J.; Wu, S. X.; Li, L.; Chen, S.; Zhao, T. Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 2011, 115, 6057–6063.

    Article  CAS  Google Scholar 

  20. Wei, W.; Wang, J. L.; Zhou, L. J.; Yang, J.; Schumann, B.; NuLi, Y. N. CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem. Commun. 2011, 13, 399–402.

    Article  CAS  Google Scholar 

  21. Liang, X. A.; Wen, Z. Y.; Liu, Y.; Zhang, H.; Huang, L. Z.; Jin, J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 2011, 196, 3655–3658.

    Article  CAS  Google Scholar 

  22. Li, S.; Xie, M.; Liu, J. B.; Wang, H.; Yan, H. Layer structured sulfur/expanded graphite composite as cathode for lithium battery. Electrochem. Solid St. 2011, 14, A105–A107.

    Article  CAS  Google Scholar 

  23. Li, X. L.; Cao, Y. L.; Qi, W.; Saraf, L. V.; Xiao, J.; Nie, Z. M.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J. Mater. Chem. 2011, 21, 16603–16610.

    Article  CAS  Google Scholar 

  24. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  CAS  Google Scholar 

  25. Liang, C. D.; Dudney, N. J.; Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 2009, 21, 4724–4730.

    Article  CAS  Google Scholar 

  26. Chen, S. R.; Zhai, Y. P.; Xu, G. L.; Jiang, Y. X.; Zhao, D. Y.; Li, J. T.; Huang, L.; Sun, S. G. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochim. Acta 2011, 56, 9549–9555.

    Article  CAS  Google Scholar 

  27. Chen, J. J.; Jia, X.; She, Q. J.; Wang, C.; Zhang, Q. A.; Zheng, M. S.; Dong, Q. F. The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochim. Acta 2010, 55, 8062–8066.

    Article  CAS  Google Scholar 

  28. Denis, P. A.; Faccio, R.; Mombru, A. W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur? ChemPhysChem 2009, 10, 715–722.

    Article  CAS  Google Scholar 

  29. Wei, J. Q.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Li, C. G.; Wang, K. L.; Wei, B. Q.; Zhu, Y. Q.; Wang, Z. C.; Luo, J. B., et al. The effect of sulfur on the number of layers in a carbon nanotube. Carbon 2007, 45, 2152–2158.

    Article  CAS  Google Scholar 

  30. Wang, Y. X.; Huang, L.; Sun, L. C.; Xie, S. Y.; Xu, G. L.; Chen, S. R.; Xu, Y. F.; Li, J. T.; Chou, S. L.; Dou, S. X., et al. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 4744–4750.

    Article  CAS  Google Scholar 

  31. Wang, C.; Chen, J. J.; Shi, Y. N.; Zheng, M. S.; Dong, Q. F. Preparation and performance of a core-shell carbon/sulfur material for lithium/sulfur battery. Electrochim. Acta 2010, 55, 7010–7015.

    Article  CAS  Google Scholar 

  32. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  33. Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303–306.

    Article  CAS  Google Scholar 

  34. Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027.

    Article  CAS  Google Scholar 

  35. Paek, S. M.; Yoo, E.; Honma, I. Enhanced cyclic per-formance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72–75.

    Article  CAS  Google Scholar 

  36. Ding, Y.; Jiang, Y.; Xu, F.; Yin, J.; Ren, H.; Zhuo, Q.; Long, Z.; Zhang, P. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun. 2010, 12, 10–13.

    Article  CAS  Google Scholar 

  37. Wang, L.; Wang, H. B.; Liu, Z. H.; Xiao, C.; Dong, S. M.; Han, P. X.; Zhang, Z. Y.; Zhang, X. Y.; Bi, C. F.; Cui, G. L. A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics 2010, 181, 1685–1689.

    Article  CAS  Google Scholar 

  38. Zhou, X. F.; Wang, F.; Zhu, Y. M.; Liu, Z. P. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353–3358.

    Article  CAS  Google Scholar 

  39. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Casalongue, H. S.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1−x FexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem. Int. Edit. 2011, 50, 7364–7368.

    Article  CAS  Google Scholar 

  40. Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H. K. Sulfur-graphene composite for rechargeable lithium batteries. J. Power Sources 2011, 196, 7030–7034.

    Article  CAS  Google Scholar 

  41. Cao, Y. L.; Li, X. L.; Aksay, I. A.; Lemmon, J.; Nie, Z. M.; Yang, Z. G.; Liu, J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2011, 13, 7660–7665.

    Article  CAS  Google Scholar 

  42. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  CAS  Google Scholar 

  43. Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

    Article  CAS  Google Scholar 

  44. Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 2012, 48, 1233–1235.

    Article  CAS  Google Scholar 

  45. Chen, W. F.; Yan, L. F.; Bangal, P. R. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 2010, 114, 19885–19890.

    Article  CAS  Google Scholar 

  46. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  47. Jeong, H. K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M. H.; An, K. H.; Kim, I. J.; Yang, C. W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366.

    Article  CAS  Google Scholar 

  48. Moulder, J. F.; Chastain, J. Handbook of X-Ray Photo-electron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: 1992.

  49. Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.

    Article  CAS  Google Scholar 

  50. Weast, R. C. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 1987.

    Google Scholar 

  51. Park, S.; An, J. H.; Piner, R. D.; Jung, I.; Yang, D. X.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.

    Article  CAS  Google Scholar 

  52. Park, S.; An, J. H.; Jung, I. W.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

    Article  CAS  Google Scholar 

  53. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

    Article  CAS  Google Scholar 

  54. Chen, W. F.; Yan, L. F.; Bangal, P. R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48, 1146–1152.

    Article  CAS  Google Scholar 

  55. Liang, X. A.; Wen, Z. Y.; Liu, Y.; Zhang, H.; Huang, L. Z.; Jin, J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 2011, 196, 3655–3658.

    Article  CAS  Google Scholar 

  56. Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energ. Environ. Sci. 2011, 4, 5053–5059.

    Article  CAS  Google Scholar 

  57. Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011, 11, 4288–4294.

    Article  CAS  Google Scholar 

  58. Yang, Y.; Yu, G. H.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z. A.; Cui, Y. Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 2011, 5, 9187–9193.

    Article  CAS  Google Scholar 

  59. Hassoun, J.; Agostini, M.; Latini, A.; Panero, S.; Sun, Y. K.; Scrosati, B. Nickel-layer protected, carbon-coated sulfur electrode for lithium battery. J. Electrochem. Soc. 2012, 159, A390–A395.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Gang Sun or Shihe Yang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, H., Xu, GL., Xu, YF. et al. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 5, 726–738 (2012). https://doi.org/10.1007/s12274-012-0257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0257-7

Keywords

  • Sulfur
  • graphene
  • cathode
  • Li-S rechargeable battery