Skip to main content
Log in

Characteristics and effects of diffused water between graphene and a SiO2 substrate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript


The graphene/SiO2 system is a promising building block for next-generation electronic devices, integrating the high electromagnetic performance of graphene with the mature technology of Si-based electronic devices. It is well known that the electromagnetic performance of graphene/SiO2 is dramatically reduced by structural defects, such as wrinkles and folding, which are suspected to result from water droplets. Therefore, understanding water diffusion between graphene and SiO2 is required for controlling structural defects and thus improving the electromagnetic performance of this system. Although the behavior of water between graphene and atomically flat mica has been investigated, the characteristics and effects of diffused water between graphene and SiO2 remain unidentified. We have investigated water diffusion between monolayer graphene and SiO2 under high humidity conditions using atomic force microscopy. For a relative humidity of over 90%, water diffuses into graphene/SiO2 and forms an ice-like structure up to two layers thick. Liquid-like water can further diffuse in, stacking over the ice-like layer and evaporating relatively easily in the air causing graphene to wrinkle and fold. By similarly investigating water diffusion between graphene and mica, we argue that water-induced wrinkle formation depends on the hydrophilicity and roughness of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  CAS  Google Scholar 

  3. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.

    Google Scholar 

  4. Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.

    Article  CAS  Google Scholar 

  5. Choi, J. S.; Kim, J. S.; Byun, I. S.; Lee, D. H.; Lee, M. J.; Park, B. H.; Lee, C.; Yoon, D.; Cheong, H.; Lee, K. H.; Sin, Y. W.; Park, J. Y.; Salmeron, M. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 2011, 333, 607–610.

    Article  CAS  Google Scholar 

  6. Xu, K.; Cao, P. G.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446–4451.

    Article  CAS  Google Scholar 

  7. Zhang, Y. B.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 2009, 5, 722–726.

    Article  CAS  Google Scholar 

  8. Patra, N.; Wang, B. Y.; Kral, P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 2009, 9, 3766–3771.

    Article  CAS  Google Scholar 

  9. Wu, Y. Q.; Lin, Y. M.; Bol, A. A.; Jenkins, K. A.; Xia, F. N.; Farmer, D. B.; Zhu, Y.; Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 2011, 472, 74–78.

    Article  CAS  Google Scholar 

  10. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  CAS  Google Scholar 

  11. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  CAS  Google Scholar 

  12. Wehling, T. O.; Lichetenstein, A. I.; Katsnelson, M. I. First-principles studies of water adsorption on graphene: The role of the substrate. Appl. Phys. Lett. 2008, 93, 202110.

    Article  Google Scholar 

  13. Shim, J.; Lui, C. H.; Ko, T. Y.; Yu, Y. J.; Kim, P.; Heinz, T. F.; Ryu, S. Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 2012, 12, 648–654

    Article  CAS  Google Scholar 

  14. Stolyarova, E.; Stolyarova, D.; Bolotin, K.; Ryu, S.; Liu, L.; Rim, K. T.; Klima, M.; Hybertsen, M.; Pogorelsky, I.; Pavlishin, I.; Kusche, K.; Hone, J. Kim, P.; Stormer, H. L.; Yakimenko, V.; Flynn, G. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 2009, 9, 332–337.

    Article  CAS  Google Scholar 

  15. Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.

    Article  CAS  Google Scholar 

  16. Severin, N.; Lange, P.; Sokolov, I. M.; Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore. Nano Lett. 2012, 12, 774–779.

    Article  CAS  Google Scholar 

  17. Park, J. H.; Aluru, N. R. Ordering-induced fast diffusion of nanoscale water film on graphene. J. Phys. Chem. C. 2010, 114, 2595–2599.

    Article  CAS  Google Scholar 

  18. Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 1995, 268, 267–269.

    Article  CAS  Google Scholar 

  19. Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

    Article  CAS  Google Scholar 

  20. Park, J. H.; Aluru, N. R. Diffusion of water submonolayers on hydrophilic surfaces. Appl. Phys. Lett. 2008, 93, 253104.

    Article  Google Scholar 

  21. Cao, P. G.; Xu, K.; Varghese, J. O.; Heath, J. R. The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. Nano Lett. 2011, 11, 5581–5586.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Changgu Lee or Bae Ho Park.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.J., Choi, J.S., Kim, JS. et al. Characteristics and effects of diffused water between graphene and a SiO2 substrate. Nano Res. 5, 710–717 (2012).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: