Nano Research

, Volume 5, Issue 10, pp 695–702 | Cite as

A graphene-based surface plasmon sensor

Research Article

Abstract

We present the application of graphene as a plasmon sensor. It was found that the electronic transport of chemical vapor deposition CVD-synthesized graphene is sensitive to surface plasmons generated by the illumination of metal nanoparticles. The observed change in electronic conduction can be up to seven times larger than the intrinsic photoresponse of graphene. A study of the mechanism revealed local field-assisted oxygen desorption induced by surface plasmons to be the cause of this intriguing behavior. A detailed investigation of the wavelength and spacing dependence of the plasmon-graphene coupling proves that graphene can be used as a sensitive, high resolution electronic plasmon detector. This finding shows the potential of devices exploiting the novel properties of graphene and surface plasmons.

Keywords

Two-dimensional materials graphene analysis chemical vapor deposition plasmon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_253_MOESM1_ESM.pdf (272 kb)
Supplementary material, approximately 271 KB.

References

  1. [1]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.CrossRefGoogle Scholar
  2. [2]
    Katsnelson, M. I.; Geim, A. K. Electron scattering on microscopic corrugations in graphene. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2008, 366, 195–204.CrossRefGoogle Scholar
  3. [3]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  4. [4]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  5. [5]
    Giannozzi, P.; Car, R.; Scoles, G. Oxygen adsorption on graphite and nanotubes. J. Chem. Phys. 2003, 118, 1003–1006.CrossRefGoogle Scholar
  6. [6]
    Shi, Y. M.; Fang, W. J.; Zhang, K. K.; Zhang, W. J.; Li, L. J. Photoelectrical response in single-layer graphene transistors. Small 2009, 5, 2005–2011.CrossRefGoogle Scholar
  7. [7]
    Lin, J.; Zhong, J. B.; Kyle, J. R.; Penchev, M.; Ozkan, M.; Ozkan, C. S. Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers. Nanotechnology 2011, 22, 355701.CrossRefGoogle Scholar
  8. [8]
    Senanayake, P.; Hung, C. H.; Shapiro, J.; Lin, A.; Liang, B. L.; Williams, B. S.; Huffaker, D. L. Surface plasmon-enhanced nanopillar photodetectors. Nano Lett. 2011, 11, 5279–5283.CrossRefGoogle Scholar
  9. [9]
    Heo, M.; Cho, H.; Jung, J. W.; Jeong, J. R.; Park, S.; Kim, J. Y. High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv. Mater. 2011, 23, 5689–5693.CrossRefGoogle Scholar
  10. [10]
    Naiki, H.; Masuo, S.; Machida, S.; Itaya, A. Single-photon emission behavior of isolated CdSe/ZnS quantum dots interacting with the localized surface plasmon resonance of silver nanoparticles. J. Phys. Chem. C 2011, 115, 23299–23304.CrossRefGoogle Scholar
  11. [11]
    Hoheisel, W.; Jungmann, K.; Vollmer, M.; Weidenauer, R.; Trager, F. Desorption stimulated by laser-induced surface-plasmon excitation. Phys. Rev. Lett. 1988, 60, 1649–1652.CrossRefGoogle Scholar
  12. [12]
    Monreal, R.; Apell, S. P. Electromagnetic-field-enhanced desorption of atoms. Phys. Rev. B 1990, 41, 7852–7855.CrossRefGoogle Scholar
  13. [13]
    Hilger, A.; Cuppers, N.; Tenfelde, M.; Kreibig, U. Surface and interface effects in the optical properties of silver nanoparticles. Eur. Phys. J. D 2000, 10, 115–118.CrossRefGoogle Scholar
  14. [14]
    Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745.CrossRefGoogle Scholar
  15. [15]
    Lyon, L. A.; Pena, D. J.; Natan, M. J. Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence. J. Phys. Chem. B 1999, 103, 5826–5831.CrossRefGoogle Scholar
  16. [16]
    Cai, W. P.; Hofmeister, H.; Rainer, T. Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica. Physica E 2001, 11, 339–344.CrossRefGoogle Scholar
  17. [17]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  18. [18]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  19. [19]
    Dresselhaus, M. S.; Dresselhaus, G.; Hofmann, M. Raman spectroscopy as a probe of graphene and carbon nanotubes. Philos T R Soc A 2008, 366, 231–236.CrossRefGoogle Scholar
  20. [20]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  21. [21]
    Marcus, M. S.; Simmons, J. M.; Castellini, O. M.; Hamers, R. J.; Eriksson, M. A. Photogating carbon nanotube transistors. J. Appl. Phys. 2006, 100, 084306.CrossRefGoogle Scholar
  22. [22]
    Langmuir, I. Vapor pressures, evaporation, condensation and adsorption. J. Am. Chem. Soc. 1932, 54, 2798–2832.CrossRefGoogle Scholar
  23. [23]
    Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Letters 2007, 7, 2645–2649.CrossRefGoogle Scholar
  24. [24]
    Zhou, H. Q.; Qiu, C. Y.; Yu, F.; Yang, H. C.; Chen, M. J.; Hu, L. J.; Guo, Y. J.; Sun, L. F. Raman scattering of monolayer graphene: The temperature and oxygen doping effects. J. Phys. D; Appl. Phys. 2011, 44, 185404.CrossRefGoogle Scholar
  25. [25]
    Hawes, E. A.; Hastings, J. T.; Crofcheck, C.; Menguc, M. P. Spectrally selective heating of nanosized particles by surface plasmon resonance. J. Quant. Spectrosc. Radiat. Transf. 2007, 104, 199–207.CrossRefGoogle Scholar
  26. [26]
    Akpati, H. C.; Nordlander, P.; Lou, L.; Avouris, P. The effects of an external electric field on the adatom-surface bond: H and Al adsorbed on Si(111). Surf. Sci. 1997, 372, 9–20.CrossRefGoogle Scholar
  27. [27]
    Pinchuk, A.; Hilger, A.; Plessen, G.; Kreibig, U. Sub-strate effect on the optical response of silver nanoparticles. Nanotechnology 2004, 15, 1890–1896.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsTaiwan UniversityTaipeiTaiwan
  2. 2.Department of Materials ScienceCheng-Kung UniversityTainanTaiwan
  3. 3.Graduate Institute of Opto-MechatronicsChung-Cheng UniversityChia-YiTaiwan

Personalised recommendations