Nano Research

, Volume 5, Issue 8, pp 576–583 | Cite as

A novel Sn2Sb2O7 nanophotocatalyst for visible-light-driven H2 evolution

  • Jinwen Shi
  • Lijing Ma
  • Po Wu
  • Zhaohui Zhou
  • Penghui Guo
  • Shaohua Shen
  • Dengwei Jing
  • Liejin GuoEmail author
Research Article


A novel pure cubic-phase pyrochlore structure tin(II) antimonate nanophotocatalyst, stoichiometric Sn2Sb2O7, has been prepared by a modified ion-exchange process using an antimonic acid precursor, and employed in visible-light-driven photocatalytic H2 evolution for the first time. The physicochemical properties (crystal phase, chemical composition and state, textural properties, and optical properties) of the material were investigated by different instrumental techniques. Compared with the antimonic acid precursor, the as-prepared Sn2Sb2O7 had a narrower bandgap, smaller crystal size, and larger BET surface area. The as-prepared Sn2Sb2O7 was validated as a promising candidate for visible-light-driven photocatalytic H2 evolution with a constant rate of 40.10 μmol·h−1·gcat −1.


Bandgap engineering energy conversion ion exchange nanostructures photochemistry tin(II) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_243_MOESM1_ESM.pdf (287 kb)
Supplementary material, approximately 287 KB.


  1. [1]
    Pagliaro, M.; Konstandopoulos, A. G.; Ciriminna, R.; Palmisano, G. Solar hydrogen: Fuel of the near future. Energy Environ. Sci. 2010, 3, 279–287.CrossRefGoogle Scholar
  2. [2]
    Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.CrossRefGoogle Scholar
  3. [3]
    Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364–386.CrossRefGoogle Scholar
  4. [4]
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefGoogle Scholar
  5. [5]
    Abe, R. Recent progress on photocatalytic and photo-electrochemical water splitting under visible light irradiation. J. Photochem. Photobio. C 2010, 11, 179–209.CrossRefGoogle Scholar
  6. [6]
    Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.CrossRefGoogle Scholar
  7. [7]
    Kitano, M.; Hara, M. Heterogeneous photocatalytic cleavage of water. J. Mater. Chem. 2010, 20, 627–641.CrossRefGoogle Scholar
  8. [8]
    Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.CrossRefGoogle Scholar
  9. [9]
    Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.CrossRefGoogle Scholar
  10. [10]
    Shen, S. H.; Shi, J. W.; Guo, P. H.; Guo, L. J. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591.CrossRefGoogle Scholar
  11. [11]
    Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.CrossRefGoogle Scholar
  12. [12]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  13. [13]
    Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.CrossRefGoogle Scholar
  14. [14]
    Hosogi, Y.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M = Nb and Ta) and their photocatalytic properties. Chem. Mater. 2008, 20, 1299–1307.CrossRefGoogle Scholar
  15. [15]
    Cho, I. S.; Kwak, C. H.; Kim, D. W.; Lee, S.; Hong, K. S. Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps. J. Phys. Chem. C 2009, 113, 10647–10653.CrossRefGoogle Scholar
  16. [16]
    Uma, S.; Singh, J.; Thakral, V. Facile room temperature ion-exchange synthesis of Sn2+ incorporated pyrochloretype oxides and their photocatalytic activities. Inorg. Chem. 2009, 48, 11624–11630.CrossRefGoogle Scholar
  17. [17]
    Boppana, V. B. R.; Lobo, R. F. Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania. J. Catal. 2011, 281, 156–168.CrossRefGoogle Scholar
  18. [18]
    Li, Q. Y.; Kako, T.; Ye, J. H. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. Int. J. Hydrogen Energy 2011, 36, 4716–4723.CrossRefGoogle Scholar
  19. [19]
    Shi, J. W.; Ye, J. H.; Zhou, Z. H.; Li, M. T.; Guo, L. J. Hydrothermal synthesis of Na0.5La0.5TiO3-LaCrO3 solidsolution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution. Chem. Eur. J. 2011, 17, 7858–7867.CrossRefGoogle Scholar
  20. [20]
    Zhang, Z. Y.; Lin, Q. P.; Zheng, S. T.; Bu, X. H.; Feng, P. Y. A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chem. Commun. 2011, 47, 3918–3920.CrossRefGoogle Scholar
  21. [21]
    Shi, J. W.; Ye, J. H.; Li, Q. Y.; Zhou, Z. H.; Tong, H.; Xi, G. C.; Guo, L. J. Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: Topotactic synthesis and enhanced photocatalytic activity. Chem. Eur. J. 2012, 18, 3157–3162.CrossRefGoogle Scholar
  22. [22]
    Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.CrossRefGoogle Scholar
  23. [23]
    Khan, S. U.; Al-Shahry, M.; Ingler, W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.CrossRefGoogle Scholar
  24. [24]
    Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water—enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 2006, 440, 295–295.CrossRefGoogle Scholar
  25. [25]
    Sun, J. W.; Liu, C.; Yang, P. D. Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 2011, 133, 19306–19309.CrossRefGoogle Scholar
  26. [26]
    Tang, M. L.; Grauer, D. C.; Lassalle-Kaiser, B.; Yachandra, V. K.; Amirav, L.; Long, J. R.; Yano, J.; Alivisatos, A. P. Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photo-sensitizer. Angew. Chem. Int. Ed. 2011, 50, 10203–10207.CrossRefGoogle Scholar
  27. [27]
    Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.CrossRefGoogle Scholar
  28. [28]
    Ozawa, Y.; Miura, N.; Yamazoe, N.; Seiyama, T. Proton conduction in thermally treated antimonic acid samples. Chem. Lett. 1982, 11, 1741–1742.CrossRefGoogle Scholar
  29. [29]
    Liu, Q. Z.; Dai, J. M.; Liu, Z. L.; Zhang, X. B.; Zhu, G. P.; Ding, G. H. Electrical and optical properties of Sb-doped BaSnO3 epitaxial films grown by pulsed laser deposition. J. Phys. D. 2010, 43, 455401.CrossRefGoogle Scholar
  30. [30]
    Shi, J. W.; Ye, J. H.; Ma, L. J.; Ouyang, S. X.; Jing, D. W.; Guo, L. J. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem. Eur. J. 2012, 18, 7543–7551.Google Scholar
  31. [31]
    Zhang, Q.; Joo, J. B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.CrossRefGoogle Scholar
  32. [32]
    Shi, J. W.; Shen S. H.; Chen Y. B.; Guo L. J.; Mao S. S. Visible light-driven photocatalysis of doped SrTiO3 tubular structure. Opt. Express 2012, 20, A351–A359.CrossRefGoogle Scholar
  33. [33]
    Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.CrossRefGoogle Scholar
  34. [34]
    Hwang, S.; Lee, M. C.; Choi, W. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: Kinetics and mechanism. Appl. Catal. B 2003, 46, 49–63.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jinwen Shi
    • 1
  • Lijing Ma
    • 1
  • Po Wu
    • 1
  • Zhaohui Zhou
    • 1
  • Penghui Guo
    • 1
  • Shaohua Shen
    • 1
  • Dengwei Jing
    • 1
  • Liejin Guo
    • 1
    Email author
  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering (MFPE)Xi’an Jiaotong University (XJTU)Xi’anChina

Personalised recommendations