Skip to main content
Log in

Ultrasmall fluorescent silver nanoclusters: Protein adsorption and its effects on cellular responses

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrasmall silver nanoclusters (AgNCs) are a novel type of fluorescent nanoprobes that have aroused a great deal of interest in recent years. In view of many promising applications in biological research, it is of great importance to explore their behavior in the complex biological environment. In this study, interactions of AgNCs with a model protein, human serum albumin (HSA), have been systematically investigated by using a variety of techniques including absorption spectroscopy, steady-state and time-resolved fluorescence, as well as circular dichroism spectroscopy. The results show that the physicochemical properties of both proteins and AgNCs undergo changes upon their interactions; however, it appears that the overall conformation of HSA remains essentially unaffected in the complex. Binding of HSA to AgNCs was assessed by measuring tryptophan fluorescence quenching of HSA by AgNCs. Furthermore, biological implications of protein adsorption were quantitatively explored by evaluating responses of HeLa cells to AgNC exposure through live-cell fluorescence microscopy and a cytotoxicity test, revealing that protein adsorption has a significant effect on the biological response to AgNC exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Y. C. Nanomaterials for biomedical applications. Nanomedicine 2008, 3, 467–469.

    Article  Google Scholar 

  2. Zhang, J. J.; Du, J. J.; Yan, M.; Dhaliwal, A.; Wen, J.; Liu, F. Q.; Segura, T.; Lu, Y. F. Synthesis of protein nano-conjugates for cancer therapy. Nano Res. 2011, 4, 425–433.

    Article  CAS  Google Scholar 

  3. Chi, X. Q.; Huang, D. T.; Zhao, Z. H.; Zhou, Z. J.; Yin, Z. Y.; Gao, J. H. Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 2012, 33, 189–206.

    Article  CAS  Google Scholar 

  4. Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418.

    Article  CAS  Google Scholar 

  5. Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Ann. Rev. Phys. Chem. 2007, 58, 409–431.

    Article  CAS  Google Scholar 

  6. Sharma, J.; Yeh, H. C.; Yoo, H.; Werner, J. H.; Martinez, J. S. A complementary palette of fluorescent silver nanoclusters. Chem. Commun. 2010, 46, 3280–3282.

    Article  CAS  Google Scholar 

  7. Patel, S. A.; Richards, C. I.; Hsiang, J. C.; Dickson, R. M. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J. Am. Chem. Soc. 2008, 130, 11602–11603.

    Article  CAS  Google Scholar 

  8. Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.

    Article  CAS  Google Scholar 

  9. Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800–8808.

    Article  CAS  Google Scholar 

  10. Yu, J. H.; Choi, S. M.; Richards, C. I.; Antoku, Y.; Dickson, R. M. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol. 2008, 84, 1435–1439.

    Article  CAS  Google Scholar 

  11. Diez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.

    Article  CAS  Google Scholar 

  12. Choi, S.; Dickson, R. M.; Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.

    Article  CAS  Google Scholar 

  13. Huang, S.; Pfeiffer, C.; Hollmann, J.; Friede, S.; Chen, J. J. C.; Beyer, A.; Haas, B.; Volz, K.; Heimbrodt, W.; Montenegro Martos, J. M., et al. Synthesis and characterization of colloidal fluorescent silver nanoclusters. Langmuir 2012, 28, 8915–8919.

    Article  CAS  Google Scholar 

  14. Guo, W. W.; Yuan, J. P.; Dong, Q. Z.; Wang, E. K. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2010, 132, 932–934.

    Article  CAS  Google Scholar 

  15. Yu, J.; Patel, S. A.; Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. 2007, 46, 2028–2030.

    Article  CAS  Google Scholar 

  16. Yin, J. J.; He, X. X.; Wang, K. M.; Qing, Z. H.; Wu, X.; Shi, H.; Yang, X. H. One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 2012, 4, 110–112.

    Article  CAS  Google Scholar 

  17. Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2050–2055.

    Article  CAS  Google Scholar 

  18. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

    Article  CAS  Google Scholar 

  19. Röcker, C.; Pötzl, M.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 2009, 4, 577–580.

    Article  Google Scholar 

  20. Jiang, X.; Weise, S.; Hafner, M.; Röcker, C.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 2010, 7, S5–S13.

    Article  CAS  Google Scholar 

  21. Treuel, L.; Nienhaus, G. U. Toward a molecular understanding of nanoparticle-protein interactions. Biophys. Rev. 2012, 4, 137–147.

    Article  CAS  Google Scholar 

  22. Shang, L.; Brandholt, S.; Stockmar, F.; Trouillet, V.; Bruns, M.; Nienhaus, G. U. Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 2012, 8, 661–665.

    Article  CAS  Google Scholar 

  23. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14265–14270.

    Article  CAS  Google Scholar 

  24. Shang, L.; Nienhaus, G. U. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 2012, DOI: 10.1007/s12551-012-0076-9.

  25. Xie, J.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

    Article  CAS  Google Scholar 

  26. Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T. Protein-protected luminescent noble metal quantum clusters: An emerging trend in atomic cluster nanoscience. Nano Rev. 2012, 3, 14767.

    CAS  Google Scholar 

  27. Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem. Mater. 2010, 22, 4364–4371.

    Article  CAS  Google Scholar 

  28. Vinelli, A.; Primiceri, E.; Brucale, M.; Zuccheri, G.; Rinaldi, R.; Samorì, B. Sample preparation for the quick sizing of metal nanoparticles by atomic force microscopy. Microsc. Res. Techniq. 2008, 71, 870–879.

    Article  Google Scholar 

  29. Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

    Article  CAS  Google Scholar 

  30. Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212.

    Article  CAS  Google Scholar 

  31. Cathcart, N.; Kitaev, V. Silver nanoclusters: single-stage scaleable synthesis of monodisperse species and their chirooptical properties. J. Phys. Chem. C 2010, 114, 16010–16017.

    Article  CAS  Google Scholar 

  32. Buffat, P. A. Dynamical behaviour of nanocrystals in transmission electron microscopy: Size, temperature or irradiation effects. Philos. T. Roy. Soc. A 2003, 361, 291–295.

    Article  CAS  Google Scholar 

  33. Baker, M. Nanotechnology imaging probes: Smaller and more stable. Nat. Methods 2010, 7, 957–962.

    Article  CAS  Google Scholar 

  34. Zhao, S. Q.; Zhou, Y. L.; Zhao, K.; Liu, Z.; Han, P.; Wang, S. F.; Xiang, W. F.; Chen, Z. H.; Lü, H. B.; Cheng, B. L., et al. Violet luminescence emitted from Ag-nanocluster doped ZnO thin films grown on fused quartz substrates by pulsed laser deposition. Physica B 2006, 373, 154–156.

    Article  CAS  Google Scholar 

  35. Kummer, K.; Vyalikh, D. V.; Gavrila, G.; Kade, A.; Weigel-Jech, M.; Mertig, M.; Molodtsov, S. L. High-resolution photoelectron spectroscopy of self-assembled mercaptohexanol monolayers on gold surfaces. J. Electron Spectrosc. Relat. Phenom. 2008, 163, 59–64.

    Article  CAS  Google Scholar 

  36. Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769–2776.

    Article  CAS  Google Scholar 

  37. Tang, Z. H.; Xu, B.; Wu, B. H.; Germann, M. W.; Wang, G. L. Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters. J. Am. Chem. Soc. 2010, 132, 3367–3374.

    Article  CAS  Google Scholar 

  38. Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011, 115, 10955–10963.

    Google Scholar 

  39. Nallathamby, P. D.; Xu, X. H. N. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale 2010, 2, 942–952.

    Article  CAS  Google Scholar 

  40. Shang, L.; Wang, Y. Z.; Jiang, J. G.; Dong, S. J. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 2007, 23, 2714–2721.

    Article  CAS  Google Scholar 

  41. Xiao, Q.; Huang, S.; Qi, Z. D.; Zhou, B.; He, Z. K.; Liu, Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. BBA-Proteins Proteom. 2008, 1784, 1020–1027.

    Article  CAS  Google Scholar 

  42. Malta, O. L. Energy transfer between molecules and small metallic particles. Phys. Lett. A 1986, 114, 195–197.

    Article  Google Scholar 

  43. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd ed.; Springer: New York, 2006.

    Book  Google Scholar 

  44. Mariam, J.; Dongre, P. M.; Kothari, D. C. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J. Fluoresc. 2011, 21, 2193–2199.

    Article  CAS  Google Scholar 

  45. Fan, C. H.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; Heeger, A. J. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nano-particles. Proc. Natl. Acad. Sci. U S A 2003, 100, 6297–6301.

    Article  CAS  Google Scholar 

  46. Ghosh, S. K.; Pal, A.; Kundu, S.; Nath, S.; Pal, T. Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles. Chem. Phys. Lett. 2004, 395, 366–372.

    Article  CAS  Google Scholar 

  47. Lacerda, S. H. D.; Park, J. J.; Meuse, C.; Pristinski, D.; Becker, M. L.; Karim, A.; Douglas, J. F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2009, 4, 365–379.

    Article  Google Scholar 

  48. Zhang, D. M.; Neumann, O.; Wang, H.; Yuwono, V. M.; Barhoumi, A.; Perham, M.; Hartgerink, J. D.; Wittung-Stafshede, P.; Halas, N. J. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 2009, 9, 666–671.

    Article  CAS  Google Scholar 

  49. Wang, J.; Jensen, U. B.; Jensen, G. V.; Shipovskov, S.; Balakrishnan, V. S.; Otzen, D.; Pedersen, J. S.; Besenbacher, F.; Sutherland, D. S. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett. 2011, 11, 4985–4991.

    Article  CAS  Google Scholar 

  50. Ohulchanskyy, T. Y.; Roy, I.; Yong, K. T.; Pudavar, H. E.; Prasad, P. N. High-resolution light microscopy using luminescent nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 162–175.

    Article  CAS  Google Scholar 

  51. Hedde, P. N.; Nienhaus, G. U. Optical imaging of nanoscale cellular structures. Biophys. Rev. 2010, 2, 147–158.

    Article  CAS  Google Scholar 

  52. Jiang, X. E.; Röcker, C.; Hafner, M.; Brandholt, S.; Dörlich, R. M.; Nienhaus, G. U. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 2010, 4, 6787–6797.

    Article  CAS  Google Scholar 

  53. Lunov, O.; Zablotskii, V.; Syrovets, T.; Röcker, C.; Tron, K.; Nienhaus, G. U.; Simmet, T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 2011, 32, 547–555.

    Article  CAS  Google Scholar 

  54. Iversen, T. G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176–185.

    Article  CAS  Google Scholar 

  55. Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768.

    Article  CAS  Google Scholar 

  56. Zhu, Y.; Li, W. X.; Li, Q. N.; Li, Y. G.; Li, Y. F.; Zhang, X. Y.; Huang, Q. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 2009, 47, 1351–1358.

    Article  CAS  Google Scholar 

  57. Horie, M.; Nishio, K.; Fujita, K.; Endoh, S.; Miyauchi, A.; Saito, Y.; Iwahashi, H.; Yamamoto, K.; Murayama, H.; Nakano, H., et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem. Res. Toxicol. 2009, 22, 543–553.

    Article  CAS  Google Scholar 

  58. Ge, C. C.; Du, J. F.; Zhao, L. N.; Wang, L. M.; Liu, Y.; Li, D. H.; Yang, Y. L.; Zhou, R. H.; Zhao, Y. L.; Chai, Z. F., et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. U S A 2011, 108, 16968–16973.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ulrich Nienhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, L., Dörlich, R.M., Trouillet, V. et al. Ultrasmall fluorescent silver nanoclusters: Protein adsorption and its effects on cellular responses. Nano Res. 5, 531–542 (2012). https://doi.org/10.1007/s12274-012-0238-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0238-x

Keywords

Navigation