Nano Research

, Volume 5, Issue 8, pp 521–530 | Cite as

Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst

  • Jian Wu
  • Yan Xue
  • Xin Yan
  • Wensheng Yan
  • Qingmei Cheng
  • Yi Xie
Research Article

Abstract

The efficient catalytic oxidation of water to dioxygen is envisioned to play an important role in solar fuel production and artificial photosynthetic systems. Despite tremendous efforts, the development of oxygen evolution reaction (OER) catalysts with high activity and low cost under mild conditions remains a great challenge. In this work, we develop a hybrid consisting of Co3O4 nanocrystals supported on single-walled carbon nanotubes (SWNTs) via a simple self-assembly approach. A Co3O4/SWNTs hybrid electrode for the OER exhibits much enhanced catalytic activity as well as superior stability under neutral and alkaline conditions compared with bare Co3O4, which only performs well in alkaline solution. Moreover, the turnover frequency for the OER exhibited by Co3O4/SWNTs in neutral water is higher than for bare Co3O4 catalysts. Synergetic chemical coupling effects between Co3O4 nanocrystals and SWNTs, revealed by the synchrotron X-ray absorption near edge structure (XANES) technique, can be regarded as contributing to the activity, cycling stability and stable operation under neutral conditions. Use of the SWNTs as an immobilization matrix substantially increases the active electrode surface area, enhances the durability of catalysts under neutral conditions and improves the electronic coupling between Co redox-active sites of Co3O4 and the electrode surface.

Keywords

Single-walled carbon nanotubes cobalt oxide hybrid oxygen evolution reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_237_MOESM1_ESM.pdf (828 kb)
Supplementary material, approximately 827 KB.

References

  1. [1]
    Armaroli, N.; Balzani, V. The Future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66.CrossRefGoogle Scholar
  2. [2]
    Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem. 2010, 2, 724–761.CrossRefGoogle Scholar
  3. [3]
    Sala, X.; Romero, I.; Rodríguez, M.; Escriche, L.; Llobet, A. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 2009, 48, 2842–2852.CrossRefGoogle Scholar
  4. [4]
    Nakagawa, T.; Bjorge, N. S.; Murray, R. W. Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J. Am. Chem. Soc. 2009, 131, 15578–15579.CrossRefGoogle Scholar
  5. [5]
    Hou, H. J. M. Structural and mechanistic aspects of Mn-oxo and Co-based compounds in water oxidation catalysis and potential applications in solar fuel production. J. Integr. Plant Biol. 2010, 52, 704–711.CrossRefGoogle Scholar
  6. [6]
    Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018–1027.CrossRefGoogle Scholar
  7. [7]
    Artero, V.; Kerlidou, M. C.; Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 2011, 55, 7238–7266.CrossRefGoogle Scholar
  8. [8]
    Wee, T. -L.; Sherman, B. D.; Gust, D.; Moore, A. L.; Moore, T. A.; Liu, Y.; Scaiano, J. C. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 2011, 133, 16742–16745.CrossRefGoogle Scholar
  9. [9]
    McCool, N.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. A Co4O4 “cubane” water oxidation catalyst inspired by photosynthesis. J. Am. Chem. Soc. 2011, 133, 11446–11449.CrossRefGoogle Scholar
  10. [10]
    Kanan, M. W.; Yano, J.; Surendranath, Y.; Dinča, M.; Yachandra, V. K.; Nocera, D. G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 2010, 132, 13692–13701.CrossRefGoogle Scholar
  11. [11]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  12. [12]
    Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 2011, 4, 499–504.CrossRefGoogle Scholar
  13. [13]
    Esswein, A. J.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 2009, 113, 15068–15072.CrossRefGoogle Scholar
  14. [14]
    Chou, N. H.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem. 2011, 4, 1566–1569.CrossRefGoogle Scholar
  15. [15]
    Gerkent, J. B.; McAlpint, J. G.; J. Chent, Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 2011, 133, 14431–14442.CrossRefGoogle Scholar
  16. [16]
    Minguzzi, A.; Fan, F. -R. F.; Vertova, A.; Rondinini, S.; Bard, A. J. Dynamic potential-pH diagrams application to electrocatalysts for water oxidation. Chem. Sci. 2012, 3, 217–229.CrossRefGoogle Scholar
  17. [17]
    Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.CrossRefGoogle Scholar
  18. [18]
    Jiao, F.; Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 2009, 48, 1841–1844.CrossRefGoogle Scholar
  19. [19]
    Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  20. [20]
    Li, X.; Qin, Y.; Picraux, S. T.; Guo, Z. -X. Noncovalent assembly of carbon nanotube-inorganic hybrids. J. Mater. Chem. 2011, 21, 7527–7547.CrossRefGoogle Scholar
  21. [21]
    Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B 2005, 109, 22212–22216.CrossRefGoogle Scholar
  22. [22]
    Toma, F. M.; Sartorel, A.; Iurlo, M.; Carraro, M.; Parisse, P.; Maccato, C.; Rapino, S.; Gonzalez, B. R.; Amenitsch, H.; Ros, T. D., et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nat. Chem. 2010, 2, 826–831.CrossRefGoogle Scholar
  23. [23]
    Shimizu, K.; Wang, J. S.; Cheng, I. F.; Wai, C. M. Rapid and one-step synthesis of single-walled carbon nanotube-supported platinum (Pt/SWNT) using as-grown SWNTs through reduction by methanol. Energ. Fuels 2009, 23, 1662–1667.CrossRefGoogle Scholar
  24. [24]
    Li, X.; Jia, Y.; Cao, A. Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 2010, 4, 506–512.CrossRefGoogle Scholar
  25. [25]
    Zhao, H.; Li, L.; Yang, J.; Zhang, Y. Co@Pt-Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation. Electrochem. Commun. 2008, 10, 1527–1529.CrossRefGoogle Scholar
  26. [26]
    Kongkanand, A.; Domínguez, R. M.; Kamat, P. V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007, 7, 676–680.CrossRefGoogle Scholar
  27. [27]
    Hu, L.; Peng, Q.; Li, Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.CrossRefGoogle Scholar
  28. [28]
    Li, J.; Tang, S. B.; Lu, L.; Zeng, H. C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 2007, 129, 9401–9409.CrossRefGoogle Scholar
  29. [29]
    Mackiewicz, N.; Surendran, G.; Remita, H.; Keita, B.; Zhang, G.; Nadjo, L.; Hagege, A.; Doris, E.; Mioskowski, C. Supramolecular self-assembly of amphiphiles on carbon nanotubes: A versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J. Am. Chem. Soc. 2008, 130, 8110–8111.CrossRefGoogle Scholar
  30. [30]
    Jiang, J.; Li, L. C. Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 2007, 61, 4894–4896.CrossRefGoogle Scholar
  31. [31]
    Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 1986, 14, 397–426.CrossRefGoogle Scholar
  32. [32]
    Dogutan, D. K.; McGuire, R.; Nocera, D. G. Electocatalytic water oxidation by cobalt (III) hangman β-octafluoro corroles. J. Am. Chem. Soc. 2011, 133, 9178–9180.CrossRefGoogle Scholar
  33. [33]
    Schechter, A.; Stanevsky, M.; Mahammed, A.; Gross, Z. Four electron oxygen reduction by brominated cobalt corrole. Inorg. Chem. 2012, 51, 22–24.CrossRefGoogle Scholar
  34. [34]
    Li, F.; Zhang, B.; Li, X.; Jiang, Y.; Chen, L.; Li, Y. Sun, L. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes. Angew. Chem. Int. Ed. 2011, 50, 12276–12279.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jian Wu
    • 1
  • Yan Xue
    • 1
  • Xin Yan
    • 1
  • Wensheng Yan
    • 2
  • Qingmei Cheng
    • 1
  • Yi Xie
    • 1
  1. 1.Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science & Technology of ChinaHefei, AnhuiChina
  2. 2.National Synchrotron Radiation LaboratoryUniversity of Science & Technology of ChinaHefei, AnhuiChina

Personalised recommendations