Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes

Abstract

Semiconducting single-walled carbon nanotubes (s-SWNTs) with a purity of ∼98% have been obtained by gel filtration of arc-discharge grown SWNTs with diameters in the range 1.2–1.6 nm. Multi-laser Raman spectroscopy confirmed the presence of less than 2% of metallic SWNTs (m-SWNTs) in the s-SWNT enriched sample. Measurement of ∼50 individual tubes in Pd-contacted devices with channel length 200 nm showed on/off ratios of >104, conductances of 1.38–5.8 μS, and mobilities in the range 40–150 cm2·V/s. Short channel multi-tube devices with ∼100 tubes showed lower on/off ratios due to residual m-SWNTs, although the on-current was greatly increased relative to the devices made from individual tubes.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  CAS  Google Scholar 

  2. [2]

    Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    Article  CAS  Google Scholar 

  3. [3]

    Zhou, C.; Kong, J.; Dai, H. Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Appl. Phys. Lett. 2000, 76, 1597–1599.

    Article  CAS  Google Scholar 

  4. [4]

    Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.

    Article  CAS  Google Scholar 

  5. [5]

    Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris, P. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002, 89, 126801.

    Article  CAS  Google Scholar 

  6. [6]

    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  Google Scholar 

  7. [7]

    Dai, H.; Javey, A.; Pop, E.; Mann, D.; Kim, W.; Lu, Y. Electrical transport properties and field effect transistors of carbon nanotubes. Nano, 2006, 1, 1–13.

    Article  CAS  Google Scholar 

  8. [8]

    Zhang, L.; Zaric, S.; Tu, X.; Wang, X.; Zhao, W.; Dai, H. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 2008, 130, 2686–2691.

    Article  CAS  Google Scholar 

  9. [9]

    Zhang, L.; Tu, X.; Welsher, K.; Wang, X.; Zheng, M.; Dai, H. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2454–2455.

    Article  CAS  Google Scholar 

  10. [10]

    Park, S.; Lee, H. W.; Wang, H.; Selvarasah, S.; Dokmeci, M. R.; Park, Y. J.; Cha, S. N.; Kim, J. M.; Bao, Z. Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography. ACS Nano 2012, 6, 2487–2496.

    Article  CAS  Google Scholar 

  11. [11]

    Ding, L.; Tselev, A.; Wang, J.; Yuan, D.; Chu, H.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

    Article  CAS  Google Scholar 

  12. [12]

    Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

    Article  CAS  Google Scholar 

  13. [13]

    Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

    Article  CAS  Google Scholar 

  14. [14]

    Takeshi, T.; Jin, H.; Miyata, Y.; Kataura, H. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Express 2008, 1, 114001.

    Article  Google Scholar 

  15. [15]

    Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

    Article  CAS  Google Scholar 

  16. [16]

    Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H., Lee, Y. S.; Park, W.; Park, C. Y., Lee, Y. L. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.

    Article  Google Scholar 

  17. [17]

    Zhang, G.; Qi, P.; Wang, X.; Lu, Y.; Li, X.; Tu R.; Bansalruntip, S.; Mann, D.; Zhang, L.; Dai, H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

    Article  CAS  Google Scholar 

  18. [18]

    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

    Article  CAS  Google Scholar 

  19. [19]

    Gomez, L. M.; Kumar, A.; Zhang, Y.; Ryu, K.; Badmaev, A.; Zhou, C. Scalable light-induced metal to semiconductor conversion of carbon nanotubes. Nano Lett. 2009, 9, 3592–3598.

    Article  CAS  Google Scholar 

  20. [20]

    Kanungo, M.; Lu, H.; Malliaras, G. G.; Blanchet, G. B. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science 2009, 323, 234–237.

    Article  CAS  Google Scholar 

  21. [21]

    Moshammer, K.; Hennrich, F.; Kappes, M. M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2009, 2, 599–606.

    Article  CAS  Google Scholar 

  22. [22]

    Liu, H.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel. J. Phys. Chem. C 2010, 114, 9270–9276.

    Article  CAS  Google Scholar 

  23. [23]

    Miyata, Y.; Shiozawa, K.; Asada, Y.; Ohno, Y.; Kitaura, R.; Mizutani, T.; Shinohara, H. Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 2011, 4, 963–970.

    Article  CAS  Google Scholar 

  24. [24]

    Krupke, R.; Hennrich, F.; Löhneysen, H. v.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.

    Article  CAS  Google Scholar 

  25. [25]

    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  CAS  Google Scholar 

  26. [26]

    Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.

    Article  CAS  Google Scholar 

  27. [27]

    LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

    Article  CAS  Google Scholar 

  28. [28]

    Ju, S.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat. Nanotechnol. 2008, 3, 356–362.

    Article  CAS  Google Scholar 

  29. [29]

    Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J., et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.

    Article  Google Scholar 

  30. [30]

    Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

    Article  CAS  Google Scholar 

  31. [31]

    Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Iijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112.

    Article  Google Scholar 

  32. [32]

    Wang, C.; Zhang, J.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

    Article  CAS  Google Scholar 

  33. [33]

    Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 2005, 87, 173101–173103.

    Article  Google Scholar 

  34. [34]

    Richter, E.; Subbaswamy, K. R. Theory of size-dependent resonance Raman scattering from carbon nanotubes. Phys. Rev. Lett. 1997, 79, 2738–2741.

    Article  CAS  Google Scholar 

  35. [35]

    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.

    Article  CAS  Google Scholar 

  36. [36]

    Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121.

    Article  CAS  Google Scholar 

  37. [37]

    Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, J., Xie, L., Hong, G. et al. Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes. Nano Res. 5, 388–394 (2012). https://doi.org/10.1007/s12274-012-0219-0

Download citation

Keywords

  • Single-walled carbon nanotubes
  • separation
  • Raman spectroscopy
  • field-effect transistor