Skip to main content
Log in

An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) Si film can form between a graphene overlayer and a Ru(0001) substrate through an intercalation process. At the graphene/2D-Si/Ru(0001) surface, the topmost graphene layer is decoupled from the Ru substrate and becomes quasi-freestanding. The interfacial Si layers show high stability due to the protection from the graphene cover. Surface science measurements indicate that the surface Si atoms can penetrate through the graphene lattice, and density functional theory calculations suggest a Si-C exchange mechanism facilitates the penetration of Si at mild temperatures. The new mechanism may be involved for other elements on graphene, if they can bond strongly with carbon. This finding opens a new route to form 2D interfacial layers between graphene and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

    Article  CAS  Google Scholar 

  3. Palacios, T. Graphene electronics: Thinking outside the silicon box. Nat. Nanotechnol. 2011, 6, 464–465.

    Article  CAS  Google Scholar 

  4. Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

    Article  CAS  Google Scholar 

  5. Ohta, T.; El Gabaly, F.; Bostwick, A.; McChesney, J. L.; Emtsev, K. V.; Schmid, A. K.; Seyller, T.; Horn, K.; Rotenberg, E. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 2008, 10, 023034.

    Article  Google Scholar 

  6. Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

    Article  CAS  Google Scholar 

  7. Wong, S. L.; Huang, H.; Wang, Y. Z.; Cao, L.; Qi, D. C.; Santoso, I.; Chen, W.; Wee, A. T. S. Quasi-free-standing epitaxial graphene on SiC (0001) by fluorine intercalation from a molecular source. ACS Nano 2011, 5, 7662–7668.

    Article  CAS  Google Scholar 

  8. Walter, A. L.; Jeon, K. J.; Bostwick, A.; Speck, F.; Ostler, M.; Seyller, T.; Moreschini, L.; Kim, Y. S.; Chang, Y. J.; Horn, K.; Rotenberg, E. Highly p-doped epitaxial graphene obtained by fluorine intercalation. Appl. Phys. Lett. 2011, 98, 184102.

    Article  Google Scholar 

  9. Oida, S.; McFeely, F. R.; Hannon, J. B.; Tromp, R. M.; Copel, M.; Chen, Z.; Sun, Y.; Farmer, D. B.; Yurkas, J. Decoupling graphene from SiC(0001) via oxidation. Phys. Rev. B 2010, 82, 041411.

    Article  Google Scholar 

  10. Kubler, L.; Aït-Mansour, K.; Diani, M.; Dentel, D.; Bischoff, J. L.; Derivaz, M. Bidimensional intercalation of Ge between SiC(0001) and a heteroepitaxial graphite top layer. Phys. Rev. B 2005, 72, 115319.

    Article  Google Scholar 

  11. Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.

    Article  Google Scholar 

  12. Varykhalov, A.; Sanchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

    Article  CAS  Google Scholar 

  13. Nagashima, A.; Tejima, N.; Oshima, C. Electronic States of the Pristine and Alkali-Metal-Intercalated Monolayer Graphite/Ni(111) Systems. Phys. Rev. B 1994, 50, 17487–17495.

    Article  CAS  Google Scholar 

  14. Huang, L.; Pan, Y.; Pan, L. D.; Gao, M.; Xu, W. Y.; Que, Y. D.; Zhou, H. T.; Wang, Y. L.; Du, S. X.; Gao, H. J. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 2011, 99, 163107.

    Article  Google Scholar 

  15. Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296–8301.

    Article  CAS  Google Scholar 

  16. Starodub, E.; Bartelt, N. C.; McCarty, K. F. Oxidation of graphene on metals. J. Phys. Chem. C 2010, 114, 5134–5140.

    Article  CAS  Google Scholar 

  17. Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

    Article  CAS  Google Scholar 

  18. Jin, L.; Fu, Q.; Zhang, H.; Mu, R. T.; Zhang, Y. H.; Tan, D. L.; Bao, X. H. Tailoring the growth of graphene on Ru(0001) via engineering of the substrate surface. J. Phys. Chem. C 2012, 116, 2988–2993.

    Article  CAS  Google Scholar 

  19. Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655–16660.

    Article  CAS  Google Scholar 

  20. Cui, Y.; Fu, Q.; Zhang, H.; Tan, D. L.; Bao, X. H. Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy. J. Phys. Chem. C 2009, 113, 20365–20370.

    Article  CAS  Google Scholar 

  21. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  22. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  23. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  24. Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

    Article  CAS  Google Scholar 

  25. Gao, J. F.; Yuan, Q. H.; Hu, H.; Zhao, J. J.; Ding, F. Formation of carbon clusters in the initial stage of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C 2011, 115, 17695–17703.

    Article  CAS  Google Scholar 

  26. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  27. Cui, Y.; Fu, Q.; Bao, X. H. Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001). Phys. Chem. Chem. Phys. 2010, 12, 5053–5057.

    Article  CAS  Google Scholar 

  28. Wang, B.; Bocquet, M. L.; Marchini, S.; Gunther, S.; Wintterlin, J. Chemical origin of a graphene moire overlayer on Ru(0001). Phys. Chem. Chem. Phys. 2008, 10, 3530–3534.

    Article  CAS  Google Scholar 

  29. Marchini, S.; Gunther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 2007, 76, 075429.

    Article  Google Scholar 

  30. Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Fabrication of metal nanoclusters on graphene grown on Ru(0001). Chin. Sci. Bull. 2009, 54, 2446–2450.

    Article  CAS  Google Scholar 

  31. Donner, K.; Jakob, P. Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moire overlayer. J. Chem. Phys. 2009, 131, 164701.

    Google Scholar 

  32. Zhou, Z. H.; Gao, F.; Goodman, D. W. Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth. Surf. Sci. 2010, 604, L31–L38.

    Article  CAS  Google Scholar 

  33. Wang, Z.; Fu, Q.; Bao, X. H. Effect of substrate surface reconstruction on interaction with adsorbates: Pt on 6H-SiC(0001). Langmuir 2010, 26, 7227–7232.

    Article  CAS  Google Scholar 

  34. Chen, J. G.; Menning, C. A.; Zellner, M. B. Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties. Surf. Sci. Rep. 2008, 63, 201–254.

    Article  CAS  Google Scholar 

  35. Berkó, A.; Bergbreiter, A.; Hoster, H. E.; Behm, R. J. From bilayer to monolayer growth: Temperature effects in the growth of Ru on Pt(111). Surf. Sci. 2009, 603, 2556–2563.

    Article  Google Scholar 

  36. Ma, T.; Fu, Q.; Su, H. Y.; Liu, H. Y.; Cui, Y.; Wang, Z.; Mu, R. T.; Li, W. X.; Bao, X. H. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity. ChemPhysChem 2009, 10, 1013–1016.

    Article  CAS  Google Scholar 

  37. Himpsel, F. J.; Christmann, K.; Heimann, P.; Eastman, D. E.; Feibelman, P. J. Adsorbate band dispersions for C on Ru(0001). Surf. Sci. 1982, 115, L159–L164.

    Article  CAS  Google Scholar 

  38. Dedkov, Y. S.; Fonin, M.; Rudiger, U.; Laubschat, C. Graphene-protected iron layer on Ni(111). Appl. Phys. Lett. 2008, 93, 022509.

    Article  Google Scholar 

  39. Shikin, A. M.; Adamchuk, V. K.; Rieder, K. H. Formation of quasi-free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers. Phys. Solid State 2009, 51, 2390–2400.

    Article  CAS  Google Scholar 

  40. He, J. W.; Xu, X.; Corneille, J. S.; Goodman, D. W. X-Ray photoelectron spectroscopic characterization of ultra-thin silicon-oxide films on a Mo(100) surface. Surf. Sci. 1992, 279, 119–126.

    Article  CAS  Google Scholar 

  41. Loffler, D.; Uhlrich, J. J.; Baron, M.; Yang, B.; Yu, X.; Lichtenstein, L.; Heinke, L.; Buchner, C.; Heyde, M.; Shaikhutdinov, S.; Freund, H. J.; Wlodarczyk, R.; Sierka, M.; Sauer, J. Growth and structure of crystalline silica sheet on Ru(0001). Phys. Rev. Lett. 2010, 105, 146104.

    Article  CAS  Google Scholar 

  42. Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

    Article  CAS  Google Scholar 

  43. Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  44. Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z.; Zhang, H. G.; Wang, Y. L.; Du, S. X.; Zhou, X. J.; Castro Neto, A. H.; Gao, H. J. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.

    Article  Google Scholar 

  45. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  CAS  Google Scholar 

  46. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

    Article  Google Scholar 

  47. Murry, R. L.; Scuseria, G. E. Theoretical evidence for a C60 “window” mechanism. Science 1994, 263, 791–793.

    Article  CAS  Google Scholar 

  48. Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Poreda, R. J. Stable compounds of helium and neon: He@C60 and Ne@C60. Science 1993, 259, 1428–1430.

    Article  CAS  Google Scholar 

  49. Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Fu or Xinhe Bao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Gao, J., Jin, L. et al. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 5, 352–360 (2012). https://doi.org/10.1007/s12274-012-0215-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0215-4

Keywords

Navigation