Nano Research

, Volume 5, Issue 4, pp 258–264 | Cite as

Vapour-phase graphene epitaxy at low temperatures

  • Lianchang Zhang
  • Zhiwen Shi
  • Donghua Liu
  • Rong Yang
  • Dongxia Shi
  • Guangyu Zhang
Research Article


We report an epitaxial growth of graphene, including homo- and hetero-epitaxy on graphite and SiC substrates, at a temperature as low as ∼540 °C. This vapour-phase epitaxial growth, carried out in a remote plasma-enhanced chemical vapor deposition (RPECVD) system using methane as the carbon source, can yield large-area high-quality graphene with the desired number of layers over the entire substrate surfaces following an AB-stacking layer-by-layer growth model. We also developed a facile transfer method to transfer a typical continuous one layer epitaxial graphene with second layer graphene islands on top of the first layer with the coverage of the second layer graphene islands being 20% (1.2 layer epitaxial graphene) from a SiC substrate onto SiO2 and measured the resistivity, carrier density and mobility. Our work provides a new strategy toward the growth of graphene and broadens its prospects of application in future electronics.


Graphene epitaxial growth remote plasma-enhanced chemical vapor deposition (RPECVD) highly ordered pyrolytic graphite (HOPG) SiC transfer mobility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_205_MOESM1_ESM.pdf (608 kb)
Supplementary material, approximately 608 KB.


  1. [1]
    Jo, G.; Choe, M.; Cho, C. Y.; Kim, J. H.; Park, W.; Lee, S.; Hong, W. K.; Kim, T. W.; Park, S. J.; Hong, B. H. et al. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 2010, 21, 175201.CrossRefGoogle Scholar
  2. [2]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  3. [3]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefGoogle Scholar
  4. [4]
    De, S.; King, P. J.; Lotya, M.; O’Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 2010, 6, 458–464.CrossRefGoogle Scholar
  5. [5]
    Wang, S. J.; Geng, Y.; Zheng, Q. B.; Kim, J. K. Fabrication of highly conducting and transparent graphene films. Carbon 2010, 48, 1815–1823.CrossRefGoogle Scholar
  6. [6]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  7. [7]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefGoogle Scholar
  8. [8]
    Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841–1845.CrossRefGoogle Scholar
  9. [9]
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefGoogle Scholar
  10. [10]
    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.CrossRefGoogle Scholar
  11. [11]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.CrossRefGoogle Scholar
  12. [12]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  13. [13]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  14. [14]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  15. [15]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  16. [16]
    Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.CrossRefGoogle Scholar
  17. [17]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  18. [18]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossRefGoogle Scholar
  19. [19]
    Bolen, M. L.; Harrison, S. E.; Biedermann, L. B.; Capano, M. A. Graphene formation mechanisms on 4H-SiC(0001). Phys. Rev. B 2009, 80, 115433.CrossRefGoogle Scholar
  20. [20]
    Jernigan, G. G.; VanMil, B. L.; Tedesco, J. L.; Tischler, J. G.; Glaser, E. R.; Davidson, A.; Campbell, P. M.; Gaskill, D. K. Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Lett. 2009, 9, 2605–2609.CrossRefGoogle Scholar
  21. [21]
    Cambaz, Z. G.; Yushin, G.; Osswald, S.; Mochalin, V.; Goyotsi, Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 2008, 46, 841–849.CrossRefGoogle Scholar
  22. [22]
    Chae, S. J; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.CrossRefGoogle Scholar
  23. [23]
    Zhang, L. C.; Shi, Z. W.; Wang, Y.; Yang, R.; Shi, D. X.; Zhang, G. Y. Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315–321.CrossRefGoogle Scholar
  24. [24]
    Lee, D. S.; Riedl, C.; Krauss, B.; von Klitzing, K.; Starke, U.; Smet, J. H. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett. 2008, 8, 4320–4325.CrossRefGoogle Scholar
  25. [25]
    Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D.X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.CrossRefGoogle Scholar
  26. [26]
    Unarunotai, S.; Murata, Y.; Chialvo, C. E.; Kim, H. S.; MacLaren, S.; Mason, N.; Petrov, I.; Rogers, J. A. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl. Phys. Lett. 2009, 95, 202101.CrossRefGoogle Scholar
  27. [27]
    Romero, H. E.; Shen, N.; Joshi, P.; Gutierrez, H. R.; Tadigadapa, S. A.; Sofo, J. O.; Eklund, P. C. N-Type behavior of graphene supported on Si/SiO2 substrates. ACS Nano 2008, 2, 2037–2044.CrossRefGoogle Scholar
  28. [28]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lianchang Zhang
    • 1
    • 2
  • Zhiwen Shi
    • 1
  • Donghua Liu
    • 1
  • Rong Yang
    • 1
  • Dongxia Shi
    • 1
  • Guangyu Zhang
    • 1
  1. 1.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsKunming UniversityKunmingChina

Personalised recommendations