Advertisement

Nano Research

, Volume 5, Issue 4, pp 258–264 | Cite as

Vapour-phase graphene epitaxy at low temperatures

  • Lianchang Zhang
  • Zhiwen Shi
  • Donghua Liu
  • Rong Yang
  • Dongxia Shi
  • Guangyu Zhang
Research Article

Abstract

We report an epitaxial growth of graphene, including homo- and hetero-epitaxy on graphite and SiC substrates, at a temperature as low as ∼540 °C. This vapour-phase epitaxial growth, carried out in a remote plasma-enhanced chemical vapor deposition (RPECVD) system using methane as the carbon source, can yield large-area high-quality graphene with the desired number of layers over the entire substrate surfaces following an AB-stacking layer-by-layer growth model. We also developed a facile transfer method to transfer a typical continuous one layer epitaxial graphene with second layer graphene islands on top of the first layer with the coverage of the second layer graphene islands being 20% (1.2 layer epitaxial graphene) from a SiC substrate onto SiO2 and measured the resistivity, carrier density and mobility. Our work provides a new strategy toward the growth of graphene and broadens its prospects of application in future electronics.

Keywords

Graphene epitaxial growth remote plasma-enhanced chemical vapor deposition (RPECVD) highly ordered pyrolytic graphite (HOPG) SiC transfer mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_205_MOESM1_ESM.pdf (608 kb)
Supplementary material, approximately 608 KB.

References

  1. [1]
    Jo, G.; Choe, M.; Cho, C. Y.; Kim, J. H.; Park, W.; Lee, S.; Hong, W. K.; Kim, T. W.; Park, S. J.; Hong, B. H. et al. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 2010, 21, 175201.CrossRefGoogle Scholar
  2. [2]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  3. [3]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefGoogle Scholar
  4. [4]
    De, S.; King, P. J.; Lotya, M.; O’Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 2010, 6, 458–464.CrossRefGoogle Scholar
  5. [5]
    Wang, S. J.; Geng, Y.; Zheng, Q. B.; Kim, J. K. Fabrication of highly conducting and transparent graphene films. Carbon 2010, 48, 1815–1823.CrossRefGoogle Scholar
  6. [6]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  7. [7]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefGoogle Scholar
  8. [8]
    Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841–1845.CrossRefGoogle Scholar
  9. [9]
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefGoogle Scholar
  10. [10]
    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.CrossRefGoogle Scholar
  11. [11]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.CrossRefGoogle Scholar
  12. [12]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  13. [13]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  14. [14]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  15. [15]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  16. [16]
    Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.CrossRefGoogle Scholar
  17. [17]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  18. [18]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossRefGoogle Scholar
  19. [19]
    Bolen, M. L.; Harrison, S. E.; Biedermann, L. B.; Capano, M. A. Graphene formation mechanisms on 4H-SiC(0001). Phys. Rev. B 2009, 80, 115433.CrossRefGoogle Scholar
  20. [20]
    Jernigan, G. G.; VanMil, B. L.; Tedesco, J. L.; Tischler, J. G.; Glaser, E. R.; Davidson, A.; Campbell, P. M.; Gaskill, D. K. Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Lett. 2009, 9, 2605–2609.CrossRefGoogle Scholar
  21. [21]
    Cambaz, Z. G.; Yushin, G.; Osswald, S.; Mochalin, V.; Goyotsi, Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 2008, 46, 841–849.CrossRefGoogle Scholar
  22. [22]
    Chae, S. J; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.CrossRefGoogle Scholar
  23. [23]
    Zhang, L. C.; Shi, Z. W.; Wang, Y.; Yang, R.; Shi, D. X.; Zhang, G. Y. Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315–321.CrossRefGoogle Scholar
  24. [24]
    Lee, D. S.; Riedl, C.; Krauss, B.; von Klitzing, K.; Starke, U.; Smet, J. H. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett. 2008, 8, 4320–4325.CrossRefGoogle Scholar
  25. [25]
    Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D.X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.CrossRefGoogle Scholar
  26. [26]
    Unarunotai, S.; Murata, Y.; Chialvo, C. E.; Kim, H. S.; MacLaren, S.; Mason, N.; Petrov, I.; Rogers, J. A. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl. Phys. Lett. 2009, 95, 202101.CrossRefGoogle Scholar
  27. [27]
    Romero, H. E.; Shen, N.; Joshi, P.; Gutierrez, H. R.; Tadigadapa, S. A.; Sofo, J. O.; Eklund, P. C. N-Type behavior of graphene supported on Si/SiO2 substrates. ACS Nano 2008, 2, 2037–2044.CrossRefGoogle Scholar
  28. [28]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lianchang Zhang
    • 1
    • 2
  • Zhiwen Shi
    • 1
  • Donghua Liu
    • 1
  • Rong Yang
    • 1
  • Dongxia Shi
    • 1
  • Guangyu Zhang
    • 1
  1. 1.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsKunming UniversityKunmingChina

Personalised recommendations