Nano Research

, Volume 5, Issue 2, pp 99–108 | Cite as

Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication

Research Article

Abstract

We demonstrate an elaborate method to controllably fabricate ultra-thin nanopores by layer-by-layer removal of insulating few-layer mica flakes with atomic force microscopy (AFM). The fabricated nanopores are geometrically asymmetric, like an inverted quadrangular frustum pyramid. The nanopore geometry can be engineered by finely tuning the mechanical load on the AFM tip and the scanning area. Particularly noteworthy is that the nanopores can also be fabricated in suspended few-layer mica membranes on a silicon window, and may find potential use as functional components in nanofluidic devices. Open image in new window

Keywords

Two-dimensional materials mica few-layer ultra-thin solid-state nanopores atomic force microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_189_MOESM1_ESM.pdf (717 kb)
Supplementary material, approximately 716 KB.

References

  1. [1]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  2. [2]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefGoogle Scholar
  3. [3]
    Koh, Y. K.; Bae, M. H.; Cahill, D. G.; Pop, E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 2011, 5, 269–274.CrossRefGoogle Scholar
  4. [4]
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.CrossRefGoogle Scholar
  5. [5]
    Caseri, W. R.; Shelden, R. A.; Suter, U. W. Preparation of muscovite with ultrahigh specific surface-area by chemical cleavage. Colloid Polym. Sci. 1992, 270, 392–398.CrossRefGoogle Scholar
  6. [6]
    Maslova, M. V.; Gerasimova, L. G.; Forsling, W. Surface properties of cleaved mica. Colloid J. 2004, 66, 322–328.CrossRefGoogle Scholar
  7. [7]
    Jin, P.; Mukaibo, H.; Horne, L. P.; Bishop, G. W.; Martin, C. R. Electroosmotic flow rectification in pyramidal-pore mica membranes. J. Am. Chem. Soc. 2010, 132, 2118–2119.CrossRefGoogle Scholar
  8. [8]
    Augustin, L.; Chi, L. F.; Fuchs, H.; Hoppner, S.; Rakers, S.; Rothig, C.; Schwaack, T.; Starrberg, F. Preparation and characterization of low-dimensional nanostructures. Appl. Surf. Sci. 1999, 141, 219–227.CrossRefGoogle Scholar
  9. [9]
    Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.CrossRefGoogle Scholar
  10. [10]
    Singh, M.; Kaur, N.; Singh, L. Morphology of heavy ions irradiated mica. Radiat. Phys. Chem. 2010, 79, 1180–1188.CrossRefGoogle Scholar
  11. [11]
    Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.CrossRefGoogle Scholar
  12. [12]
    Downs, R. T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. Am Mineral. 2003, 88, 247–250.Google Scholar
  13. [13]
    Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; Agraït, N.; van Wees, B. J.; Rubio-Bollinger, G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 2011, 7, 2491–2497.Google Scholar
  14. [14]
    Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre transelectrode membrane. Nature 2010, 467, 190–193.CrossRefGoogle Scholar
  15. [15]
    Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X. H. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153.CrossRefGoogle Scholar
  16. [16]
    Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 3163–3167.CrossRefGoogle Scholar
  17. [17]
    Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z. T.; Johnson, A. T. et. al.. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 2915–2921.CrossRefGoogle Scholar
  18. [18]
    Howorka, S.; Siwy, Z. Nanopore analytics: Sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.CrossRefGoogle Scholar
  19. [19]
    Mulero, R.; Prabhu, A. S.; Freedman, K. J.; Kim, M. J. Nanopore-based devices for bioanalytical applications. JALA 2010, 15, 243–252.Google Scholar
  20. [20]
    Vlassiouk, I.; Apel, P. Y.; Dmitriev, S. N.; Healy, K.; Siwy, Z. S. Versatile ultrathin nanoporous silicon nitride membranes. Proc. Natl. Acad. Sci. USA 2009, 106, 21039–21044.CrossRefGoogle Scholar
  21. [21]
    Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J. M.; McReynolds, L.; Drndic, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 2010, 5, 807–814.CrossRefGoogle Scholar
  22. [22]
    Deamer, D. W.; Branton, D. Characterization of nucleic acids by nanopore analysis. Accounts. Chem. Res. 2002, 35, 817–825.CrossRefGoogle Scholar
  23. [23]
    Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M. J.; Golovchenko, J. A. Ion-beam sculpting at nanometre length scales. Nature 2001, 412, 166–169.CrossRefGoogle Scholar
  24. [24]
    Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215.CrossRefGoogle Scholar
  25. [25]
    Striemer, C. C.; Gaborski, T. R.; McGrath, J. L.; Fauchet, P. M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 2007, 445, 749–753.CrossRefGoogle Scholar
  26. [26]
    Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2003, 2, 537–540.CrossRefGoogle Scholar
  27. [27]
    Zwolak, M.; Di Ventra, M. Colloquium: Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 2008, 80, 141–165.CrossRefGoogle Scholar
  28. [28]
    Bayley, H.; Cremer, P. S. Stochastic sensors inspired by biology. Nature 2001, 413, 226–230.CrossRefGoogle Scholar
  29. [29]
    Stoddart, D.; Maglia, G.; Mikhailova, E.; Heron, A. J.; Bayley, H. Multiple base-recognition sites in a biological nanopore: Two heads are better than one. Angew. Chem. Int. Edit. 2010, 49, 556–559.Google Scholar
  30. [30]
    Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA 2009, 106, 7702–7707.CrossRefGoogle Scholar
  31. [31]
    Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H. Single-molecule DNA detection with an engineered MSPA protein nanopore. Proc. Natl. Acad. Sci. USA 2008, 105, 20647–20652.CrossRefGoogle Scholar
  32. [32]
    Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nanopore DNA sequencing with MSPA. Proc. Natl. Acad. Sci. USA 2010, 107, 16060–16065.CrossRefGoogle Scholar
  33. [33]
    Siwy, Z. S.; Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 2010, 39, 1115–1132.CrossRefGoogle Scholar
  34. [34]
    Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095.CrossRefGoogle Scholar
  35. [35]
    Xia, F.; Guo, W.; Mao, Y. D.; Hou, X.; Xue, J. M.; Xia, H. W.; Wang, L.; Song, Y. L.; Ji, H.; Ouyang, Q. et al. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 2008, 130, 8345–8350.CrossRefGoogle Scholar
  36. [36]
    Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385–2401.CrossRefGoogle Scholar
  37. [37]
    Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry-Fourth Edition. W. H. Freeman: New York, 2005; pp. 306–330.Google Scholar
  38. [38]
    Gyurcsanyi, R. E. Chemically-modified nanopores for sensing. Trends Anal. Chem. 2008, 27, 627–639.CrossRefGoogle Scholar
  39. [39]
    Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 2008, 37, 2512–2529.CrossRefGoogle Scholar
  40. [40]
    Min, S. K.; Kim, W. Y.; Cho, Y.; Kim, K. S. Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 2011, 6, 162–165.CrossRefGoogle Scholar
  41. [41]
    Huang, S.; He, J.; Chang, S.; Zhang, P.; Liang, F.; Li, S.; Tuchband, M.; Fuhrmann, A.; Ros, R.; Lindsay, S. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 2010, 5, 868–873.CrossRefGoogle Scholar
  42. [42]
    Postma, H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 2010, 10, 420–425.CrossRefGoogle Scholar
  43. [43]
    Prasongkit, J.; Grigoriev, A.; Pathak, B.; Ahuja, R.; Scheicher, R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 2011, 11, 1941–1945.CrossRefGoogle Scholar
  44. [44]
    Dimiev, A.; Kosynkin, D. V.; Sinitskii, A.; Slesarev, A.; Sun, Z.; Tour, J. M. Layer-by-layer removal of graphene for device patterning. Science 2011, 331, 1168–1172.CrossRefGoogle Scholar
  45. [45]
    Miyake, S. 1 nm deep mechanical processing of muscovite mica by atomic force microscopy. Appl. Phys. Lett. 1995, 67, 2925–2927.CrossRefGoogle Scholar
  46. [46]
    Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K.. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81, 454–456.CrossRefGoogle Scholar
  47. [47]
    Weng, H.; Yang, X.; Dong, J.; Mizuseki, H.; Kawasaki, M.; Kawazoe, Y. Electronic structure and optical properties of the Co-doped anatase TiO2 studied from first principles. Phys. Rev. B 2004, 69, 125219.CrossRefGoogle Scholar
  48. [48]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  49. [49]
    Sham, L. J.; Schlüter, M. Density-functional theory of the band gap. Phys. Rev. B 1985, 32, 3883–3889.CrossRefGoogle Scholar
  50. [50]
    Davidson, A. T.; Vickers, A. F. The optical properties of mica in the vacuum ultraviolet. J. Phys. C: Solid State Phys. 1972, 5, 879–887.CrossRefGoogle Scholar
  51. [51]
    Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett.. 2007, 7, 3569–3575.CrossRefGoogle Scholar
  52. [52]
    Gaskell, P. E.; Skulason, H. S.; Rodenchuk, C.; Szkopek, T. Counting graphene layers on glass via optical reflection microscopy. Appl. Phys. Lett. 2009, 94, 143101.CrossRefGoogle Scholar
  53. [53]
    Nolen, C. M.; Denina, G.; Teweldebrhan, D.; Bhanu, B.; Balandin, A. A. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. ACS Nano 2011, 5, 914–922.CrossRefGoogle Scholar
  54. [54]
    Dorn, M.; Lange, P.; Chekushin, A.; Severin, N.; Rabe, J. P. High contrast optical detection of single graphenes on optically transparent substrates. J. Appl. Phys. 2010, 108, 106101.CrossRefGoogle Scholar
  55. [55]
    Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al., Hunting for monolayer boron nitride: Optical and raman signatures. Small 2011, 7, 465–468.CrossRefGoogle Scholar
  56. [56]
    Westheim, G. Optimal magnification in visual microscopy. J. Opt. Soc. Am. 1972, 62, 1502–1504.CrossRefGoogle Scholar
  57. [57]
    Teo, G. Q.; Wang, H. M.; Wu, Y. H.; Guo, Z. B.; Zhang, J.; Ni, Z. H.; Shen, Z. X. Visibility study of graphene multilayer structures. J. Appl. Phys. 2008, 103, 124302.CrossRefGoogle Scholar
  58. [58]
    Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049–5055.CrossRefGoogle Scholar
  59. [59]
    Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.CrossRefGoogle Scholar
  60. [60]
    Shaw, R. S.; Packard, N.; Schröter, M.; Swinney, H. L. Geometry-induced asymmetric diffusion. Proc. Natl. Acad. Sci. USA 2007, 104, 9580–9584.CrossRefGoogle Scholar
  61. [61]
    Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339–1344.CrossRefGoogle Scholar
  62. [62]
    Cao, L. X.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S. T.; Wang, Y. G.; Jiang, L.; Zhu, D. B. Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 2011, 4, 2259–2266.CrossRefGoogle Scholar
  63. [63]
    Guo, W.; Xia, H. W.; Cao, L. X.; Xia, F.; Wang, S. T.; Zhang, G. Z.; Song, Y. L.; Wang, Y. G.; Jiang, L.; Zhu, D. B. Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes. Adv. Funct. Mater. 2010, 20, 3561–3567.CrossRefGoogle Scholar
  64. [64]
    Guo, W.; Xia, H.; Xia, F.; Hou, X.; Cao, L.; Wang, L.; Xue, J.; Zhang, G.; Song, Y.; Zhu, D. et al. Current rectification in temperature-responsive single nanopores. ChemPhysChem 2010, 11, 859–864.CrossRefGoogle Scholar
  65. [65]
    Zhang, W. M.; Wang, Y. G.; Li, J.; Xue, J. M.; Ji, H.; Ouyang, Q.; Xu, J.; Zhang, Y. Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation. Appl. Phys. Lett. 2007, 90, 163102.CrossRefGoogle Scholar
  66. [66]
    Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano, in press, DOI:10.1021/nn203879f.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina
  3. 3.School of Chemistry and EnvironmentBeihang UniversityBeijingChina

Personalised recommendations