Advertisement

Nano Research

, Volume 5, Issue 2, pp 82–87 | Cite as

Studies of graphene-based nanoelectromechanical switches

  • Zhiwen Shi
  • Hongliang Lu
  • Lianchang Zhang
  • Rong Yang
  • Yi Wang
  • Donghua Liu
  • Haiming Guo
  • Dongxia Shi
  • Hongjun Gao
  • Enge Wang
  • Guangyu Zhang
Research Article

Abstract

Electromechanical switch devices employing suspended graphene as movable elements have been developed. Their on and off states can be controlled by modulating the electrostatic force applied to the graphene. The devices exhibit on-off ratios of up to 104 and lifetimes of over 500 cycles. The prototype device demonstrates the feasibility of using multilayer graphene in electromechanical systems. Measurements of the mechanical properties of the free-standing monolayer graphene gave a value of 0.96 TPa for the Young’s modulus and a van der Waals force with silicon oxide of 0.17 nN/nm2.

Keywords

Suspended graphene electrostatic force van der Waals force nanoelectromechanical systems (NEMS) scanning tunneling microscope (STM) atomic force microscopy (AFM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_187_MOESM1_ESM.pdf (160 kb)
Supplementary material, approximately 160 KB.

References

  1. [1]
    Craighead, H. G. Nanoelectromechanical systems. Science 2000, 290, 1532–1535.CrossRefGoogle Scholar
  2. [2]
    Meindl, J. D.; Chen, Q.; Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 2001, 293, 2044–2049.CrossRefGoogle Scholar
  3. [3]
    Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; Wong, H. S. P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288.CrossRefGoogle Scholar
  4. [4]
    Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.CrossRefGoogle Scholar
  5. [5]
    Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lei, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.CrossRefGoogle Scholar
  6. [6]
    Semet, V.; Binh, V. T.; Guillot, D.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; Legagneux, P.; Pribat, D. Reversible electromechanical characteristics of individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87, 223103.CrossRefGoogle Scholar
  7. [7]
    Jang, J. E.; Cha, S. N.; Choi, Y.; Amaratunga, G. A. J.; Kang, D. J.; Hasko, D. G.; Jung, J. E.; Kim, J. M. Nanoelectro-mechanical switches with vertically aligned carbon nanotubes. Appl. Phys. Lett. 2005, 87, 163114.CrossRefGoogle Scholar
  8. [8]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  9. [9]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  10. [10]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  11. [11]
    Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefGoogle Scholar
  12. [12]
    Son, Y. W.; Cohen, M. M.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefGoogle Scholar
  13. [13]
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  14. [14]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Roehrl, J., et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossRefGoogle Scholar
  15. [15]
    Zhang, L.; Shi, Z.; Wang, Y.; Yang, R.; Shi, D.; Zhang, G. Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315–321.CrossRefGoogle Scholar
  16. [16]
    Yang, R.; Zhang, L.; Wang, Y.; Shi, Z.; Shi, D.; Gao, H.; Wang, E.; Zhang, G. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.CrossRefGoogle Scholar
  17. [17]
    Shi, Z.; Yang, R.; Zhang, L.; Wang, Y.; Liu, D.; Shi, D.; Wang, E.; Zhang, G. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.CrossRefGoogle Scholar
  18. [18]
    Milaninia, K. M.; Baldo, M. A.; Reina, A.; Kong, J. All graphene electromechanical switch fabricated by chemical vapor deposition. Appl. Phys. Lett. 2009, 95, 183105.CrossRefGoogle Scholar
  19. [19]
    Lauren, C. Fabrication of a three terminal nanomechanical graphene switch. In 2010 NNIN REU Research Accomplishments, 2010; p. 118.Google Scholar
  20. [20]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  21. [21]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  22. [22]
    Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 2009, 9, 346–352.CrossRefGoogle Scholar
  23. [23]
    Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451.CrossRefGoogle Scholar
  24. [24]
    Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Tech. B 2007, 25, 2558–2561.CrossRefGoogle Scholar
  25. [25]
    Xu, Z. P. Graphene nano-ribbons under tension. J. Comput. Theor. Nanosci. 2009, 6, 625–628.CrossRefGoogle Scholar
  26. [26]
    Lee, B. H.; Hwang, H. J.; Cho, C. H.; Lim, S. K.; Lee, S. Y.; Hwang, H. Nano-electromechanical switch-CMOS hybrid technology and its applications. J. Nanosci. Nanotechnol. 2011, 11, 256–261.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhiwen Shi
    • 1
  • Hongliang Lu
    • 1
  • Lianchang Zhang
    • 1
  • Rong Yang
    • 1
  • Yi Wang
    • 1
  • Donghua Liu
    • 1
  • Haiming Guo
    • 1
  • Dongxia Shi
    • 1
  • Hongjun Gao
    • 1
  • Enge Wang
    • 2
  • Guangyu Zhang
    • 1
  1. 1.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.International Centre of Quantum Materials, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations