Skip to main content
Log in

Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present a bottom-up synthesis, spectroscopic characterization, and ab initio simulations of star-shaped hexagonal zinc oxide (ZnO) nanowires. The ZnO nanostructures were synthesized by a low-temperature hydrothermal growth method. The cross-section of the ZnO nanowires transformed from a hexagon to a hexagram when sulfur dopants from thiourea [SC(NH2)2] were added into the growth solution, but no transformation occurred when urea (OC(NH2)2) was added. Comparison of the X-ray photoemission and photoluminescence spectra of undoped and sulfur-doped ZnO confirmed that sulfur is responsible for the novel morphology. Large-scale theoretical calculations were conducted to understand the role of sulfur doping in the growth process. The ab initio simulations demonstrated that the addition of sulfur causes a local change in charge distribution that is stronger at the vertices than at the edges, leading to the observed transformation from hexagon to hexagram nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Foreman, J. V.; Li, J.; Peng, H.; Choi, S.; Everitt, H. O.; Liu, J. Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders. Nano Lett. 2006, 6, 1126–1130.

    Article  CAS  Google Scholar 

  2. Djurišić, A. B.; Leung, Y. H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961.

    Article  Google Scholar 

  3. Foreman, J. V.; Everitt, H. O.; Yang, J.; Liu, J. Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders. Appl. Phys. Lett. 2007, 91, 011902.

    Article  Google Scholar 

  4. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

    Article  Google Scholar 

  5. Reynolds, D. C.; Look, D. C.; Jogai, B. Fine structure on the green band in ZnO. J. Appl. Phys. 2001, 89, 6189–6191.

    Article  CAS  Google Scholar 

  6. Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 2009, 21, 2767–2770.

    Article  CAS  Google Scholar 

  7. Yeh, P. H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 2009, 21, 4975–4978.

    Article  CAS  Google Scholar 

  8. Weintraub, B.; Wei, Y.; Wang, Z. L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Edit. 2009, 48, 8981–8985.

    Article  CAS  Google Scholar 

  9. Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  CAS  Google Scholar 

  10. Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  CAS  Google Scholar 

  11. Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  CAS  Google Scholar 

  12. Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 2004, 69, 245401.

    Article  Google Scholar 

  13. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Edit. 2003, 42, 3031–3034.

    Article  CAS  Google Scholar 

  14. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.

    Article  CAS  Google Scholar 

  15. Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng. R 2009, 64, 33–71.

    Article  Google Scholar 

  16. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

    Article  CAS  Google Scholar 

  17. Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351.

    Article  CAS  Google Scholar 

  18. Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005, 309, 1700–1704.

    Article  CAS  Google Scholar 

  19. Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

    Article  CAS  Google Scholar 

  20. Pan, Z. W.; Mahurin, S. M.; Dai, S.; Lowndes, D. H. Nanowire array gratings with ZnO combs. Nano Lett. 2005, 5, 723–727.

    Article  CAS  Google Scholar 

  21. Gao, P. X.; Wang, Z. L. Nanopropeller arrays of zinc oxide. Appl. Phys. Lett. 2004, 84, 2883–2885.

    Article  CAS  Google Scholar 

  22. Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

    Article  CAS  Google Scholar 

  23. Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Edit. 2002, 41, 1188–1191.

    Article  CAS  Google Scholar 

  24. Kresse, G.; Hafner, J. Ab initio molecular dynamics for openshell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    Article  CAS  Google Scholar 

  25. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Perdew, J. P. Correlation hole of the spinpolarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298–13307.

    Article  Google Scholar 

  27. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  28. Geng, B. Y.; Wang, G. Z.; Jiang, Z.; Xie, T.; Sun, S. H.; Meng, G. W.; Zhang, L. D. Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 2003, 82, 4791–4793.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J., Lin, Q., Yang, S. et al. Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism. Nano Res. 5, 20–26 (2012). https://doi.org/10.1007/s12274-011-0180-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0180-3

Keywords

Navigation