Nano Research

, Volume 5, Issue 1, pp 20–26 | Cite as

Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism

  • Jinhyun Cho
  • Qiubao Lin
  • Sungwoo Yang
  • Jay G. SimmonsJr.
  • Yingwen Cheng
  • Erica Lin
  • Jianqiu Yang
  • John V. Foreman
  • Henry O. Everitt
  • Weitao Yang
  • Jungsang Kim
  • Jie Liu
Research Article

Abstract

We present a bottom-up synthesis, spectroscopic characterization, and ab initio simulations of star-shaped hexagonal zinc oxide (ZnO) nanowires. The ZnO nanostructures were synthesized by a low-temperature hydrothermal growth method. The cross-section of the ZnO nanowires transformed from a hexagon to a hexagram when sulfur dopants from thiourea [SC(NH2)2] were added into the growth solution, but no transformation occurred when urea (OC(NH2)2) was added. Comparison of the X-ray photoemission and photoluminescence spectra of undoped and sulfur-doped ZnO confirmed that sulfur is responsible for the novel morphology. Large-scale theoretical calculations were conducted to understand the role of sulfur doping in the growth process. The ab initio simulations demonstrated that the addition of sulfur causes a local change in charge distribution that is stronger at the vertices than at the edges, leading to the observed transformation from hexagon to hexagram nanostructures. Open image in new window

Keywords

ZnO nanostar hexagram thiourea sulfur doping growth mechanism ab initio simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_180_MOESM1_ESM.pdf (226 kb)
Supplementary material, approximately 225 KB.

References

  1. [1]
    Foreman, J. V.; Li, J.; Peng, H.; Choi, S.; Everitt, H. O.; Liu, J. Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders. Nano Lett. 2006, 6, 1126–1130.CrossRefGoogle Scholar
  2. [2]
    Djurišić, A. B.; Leung, Y. H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961.CrossRefGoogle Scholar
  3. [3]
    Foreman, J. V.; Everitt, H. O.; Yang, J.; Liu, J. Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders. Appl. Phys. Lett. 2007, 91, 011902.CrossRefGoogle Scholar
  4. [4]
    Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.CrossRefGoogle Scholar
  5. [5]
    Reynolds, D. C.; Look, D. C.; Jogai, B. Fine structure on the green band in ZnO. J. Appl. Phys. 2001, 89, 6189–6191.CrossRefGoogle Scholar
  6. [6]
    Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 2009, 21, 2767–2770.CrossRefGoogle Scholar
  7. [7]
    Yeh, P. H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 2009, 21, 4975–4978.CrossRefGoogle Scholar
  8. [8]
    Weintraub, B.; Wei, Y.; Wang, Z. L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Edit. 2009, 48, 8981–8985.CrossRefGoogle Scholar
  9. [9]
    Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  10. [10]
    Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.CrossRefGoogle Scholar
  11. [11]
    Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.CrossRefGoogle Scholar
  12. [12]
    Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 2004, 69, 245401.CrossRefGoogle Scholar
  13. [13]
    Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Edit. 2003, 42, 3031–3034.CrossRefGoogle Scholar
  14. [14]
    Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.CrossRefGoogle Scholar
  15. [15]
    Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng. R 2009, 64, 33–71.CrossRefGoogle Scholar
  16. [16]
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.CrossRefGoogle Scholar
  17. [17]
    Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351.CrossRefGoogle Scholar
  18. [18]
    Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005, 309, 1700–1704.CrossRefGoogle Scholar
  19. [19]
    Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.CrossRefGoogle Scholar
  20. [20]
    Pan, Z. W.; Mahurin, S. M.; Dai, S.; Lowndes, D. H. Nanowire array gratings with ZnO combs. Nano Lett. 2005, 5, 723–727.CrossRefGoogle Scholar
  21. [21]
    Gao, P. X.; Wang, Z. L. Nanopropeller arrays of zinc oxide. Appl. Phys. Lett. 2004, 84, 2883–2885.CrossRefGoogle Scholar
  22. [22]
    Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.CrossRefGoogle Scholar
  23. [23]
    Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Edit. 2002, 41, 1188–1191.CrossRefGoogle Scholar
  24. [24]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for openshell transition metals. Phys. Rev. B 1993, 48, 13115–13118.CrossRefGoogle Scholar
  25. [25]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  26. [26]
    Wang, Y.; Perdew, J. P. Correlation hole of the spinpolarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298–13307.CrossRefGoogle Scholar
  27. [27]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  28. [28]
    Geng, B. Y.; Wang, G. Z.; Jiang, Z.; Xie, T.; Sun, S. H.; Meng, G. W.; Zhang, L. D. Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 2003, 82, 4791–4793.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jinhyun Cho
    • 1
  • Qiubao Lin
    • 2
    • 3
  • Sungwoo Yang
    • 2
  • Jay G. SimmonsJr.
    • 2
  • Yingwen Cheng
    • 2
  • Erica Lin
    • 2
  • Jianqiu Yang
    • 2
  • John V. Foreman
    • 4
  • Henry O. Everitt
    • 4
    • 5
  • Weitao Yang
    • 2
  • Jungsang Kim
    • 1
  • Jie Liu
    • 2
  1. 1.Department of Electrical and Computer Engineering, Fitzpatrick Institute for PhotonicsDuke UniversityDurhamUSA
  2. 2.Department of Chemistry, French Family Science CenterDuke UniversityDurhamUSA
  3. 3.School of ScienceJimei UniversityXiamenChina
  4. 4.U.S. Army Aviation and Missile Research, Development, and Engineering CenterWeapons Sciences DirectorateRedstone ArsenalUSA
  5. 5.Department of PhysicsDuke UniversityDurhamUSA

Personalised recommendations