Skip to main content

Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires

Abstract

The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-10-nm gold nanowires.

This is a preview of subscription content, access via your institution.

References

  1. Greer, J. R.; Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 2006, 73, 245410.

    Article  Google Scholar 

  2. Uchic, M. D.; Dimiduk, M. D.; Florando, J. N.; Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989.

    Article  CAS  Google Scholar 

  3. Shan, Z. W.; Mishra, R. K.; Asif, S. A. S.; Warren, O. L.; Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 2008, 7, 115–119.

    Article  CAS  Google Scholar 

  4. Rabkin, E.; Srolovitz, D. J. Onset of plasticity in gold nanopillar compression. Nano Lett. 2007, 7, 101–107.

    Article  CAS  Google Scholar 

  5. Zhu, T.; Li, J.; Samanta, A.; Leach, A.; Gall, K. Temperature and strain rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 2008, 100, 025502.

    Article  Google Scholar 

  6. Cimalla, V.; Röhlig, C. C.; Pezoldt, J.; Niebelschütz, M.; Ambacher, O.; Brückner, K.; Hein, M.; Weber, J.; Milenkovic, S.; Smith, A. J.; Hassel, A. W. Nanomechanics of single crystalline tungsten nanowires. J. Nanomater. 2008, 2008, 638947.

    Article  Google Scholar 

  7. Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 2005, 4, 525–529.

    Article  CAS  Google Scholar 

  8. Wang, M. S.; Kaplan-Ashiri, I.; Wei, X.; Rosentsveig, R.; Wagner, H.; Tenne, R.; Peng, L. In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Res. 2008, 1, 22–31.

    Article  CAS  Google Scholar 

  9. Hsin, C. L.; Mai, W. J.; Gu, Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L. Elastic properties and buckling of silicon nanowires. Adv. Mater. 2008, 20, 3919–3923.

    Article  CAS  Google Scholar 

  10. Zhu, Y.; Moldovan, N.; Espinosa, H. D. A microelectro-mechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 2005, 86, 013506.

    Article  Google Scholar 

  11. Zhu, Y.; Espinosa, H. D. An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 14503–14508.

    Article  CAS  Google Scholar 

  12. Peng, B.; Locascio, M.; Zapol, P.; Li, S. Y.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 2008, 3, 626–631.

    Article  CAS  Google Scholar 

  13. Lu, Y.; Ganesan, Y.; Lou, J. A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exp. Mech. 2010, 50, 47–54.

    Article  CAS  Google Scholar 

  14. Ganesan, Y.; Lu, Y.; Peng, C.; Lu, H.; Ballarini, R.; Lou, J. Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials. J. Microelectromech. Syst. 2010, 19, 675–682.

    Article  Google Scholar 

  15. Eppell, S. J.; Smith, B. N.; Kahn, H.; Ballarini, R. Nano measurements with micro-devices: Mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface 2006, 3, 117–121.

    Article  CAS  Google Scholar 

  16. Haque, M. A.; Saif, M. T. A. Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6335–6340.

    Article  CAS  Google Scholar 

  17. Guo, H.; Yan, P. F.; Wang, Y. B.; Tan, J.; Zhang, Z. F.; Sui, M. L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735–739.

    Article  CAS  Google Scholar 

  18. Agrait, N.; Rubio, G.; Vieira, S. Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 1995, 74, 3995–3998.

    Article  Google Scholar 

  19. Kizuka, T. Atomistic visualization of deformation in gold. Phys. Rev. B 1998, 57, 11158–11163.

    Article  CAS  Google Scholar 

  20. Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 2010, 1, 1–8.

    Article  Google Scholar 

  21. Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

    Article  CAS  Google Scholar 

  22. Zheng K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D.; Ma, E. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 2010, 1, 1–8.

    Article  Google Scholar 

  23. Howatson, A. M.; Lund, P. G.; Todd, J. D. Engineering Tables and Data, 2nd ed.; Chapman and Hall: London, 1991; p 41.

    Google Scholar 

  24. Zhu, T.; Li, J.; Ogata, S.; Yip, S. Mechanics of ultra-strength materials. MRS Bull. 2009, 34, 167–172.

    Article  CAS  Google Scholar 

  25. Rubio-Bollinger, G.; Bahn, S. R.; Agrait, N.; Jacobsen, K. W.; Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 2001, 87, 026101.

    Article  Google Scholar 

  26. Ogata, S.; Li, J.; Hirosaki, N.; Shibutani, Y; Yip, S. Ideal shear strain of metals and ceramics. Phys. Rev. B 2004, 70, 104104.

    Article  Google Scholar 

  27. Cai, J.; Ye, Y. Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 1996, 54, 8398–8410.

    Article  CAS  Google Scholar 

  28. Mei, J.; Davenport, J. W.; Fernando, G. W. Analytic embedded-atom potentials for fcc metals-application to liquid and solid copper. Phys Rev B 1991, 43, 4653–4658.

    Article  Google Scholar 

  29. Grochola, G.; Russo, S. P.; Snook, I. K. On fitting a gold embedded atom method potential using the force matching method. J. Chem. Phys. 2005, 123, 204719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lou.

Electronic supplementary material

Supplementary material, approximately 365 KB.

Supplementary material, approximately 5.33 MB.

Supplementary material, approximately 1.05 MB.

Supplementary material, approximately 4.81 MB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, Y., Song, J., Huang, J.Y. et al. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 4, 1261–1267 (2011). https://doi.org/10.1007/s12274-011-0177-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0177-y

Keywords

  • Nanowires
  • in situ transmission electron microscope (TEM)
  • mechanical characterization
  • dislocation nucleation
  • plasticity