Greer, J. R.; Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B
2006, 73, 245410.
Article
Google Scholar
Uchic, M. D.; Dimiduk, M. D.; Florando, J. N.; Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science
2004, 305, 986–989.
Article
CAS
Google Scholar
Shan, Z. W.; Mishra, R. K.; Asif, S. A. S.; Warren, O. L.; Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater.
2008, 7, 115–119.
Article
CAS
Google Scholar
Rabkin, E.; Srolovitz, D. J. Onset of plasticity in gold nanopillar compression. Nano Lett.
2007, 7, 101–107.
Article
CAS
Google Scholar
Zhu, T.; Li, J.; Samanta, A.; Leach, A.; Gall, K. Temperature and strain rate dependence of surface dislocation nucleation. Phys. Rev. Lett.
2008, 100, 025502.
Article
Google Scholar
Cimalla, V.; Röhlig, C. C.; Pezoldt, J.; Niebelschütz, M.; Ambacher, O.; Brückner, K.; Hein, M.; Weber, J.; Milenkovic, S.; Smith, A. J.; Hassel, A. W. Nanomechanics of single crystalline tungsten nanowires. J. Nanomater.
2008, 2008, 638947.
Article
Google Scholar
Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater.
2005, 4, 525–529.
Article
CAS
Google Scholar
Wang, M. S.; Kaplan-Ashiri, I.; Wei, X.; Rosentsveig, R.; Wagner, H.; Tenne, R.; Peng, L. In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Res.
2008, 1, 22–31.
Article
CAS
Google Scholar
Hsin, C. L.; Mai, W. J.; Gu, Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L. Elastic properties and buckling of silicon nanowires. Adv. Mater.
2008, 20, 3919–3923.
Article
CAS
Google Scholar
Zhu, Y.; Moldovan, N.; Espinosa, H. D. A microelectro-mechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett.
2005, 86, 013506.
Article
Google Scholar
Zhu, Y.; Espinosa, H. D. An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. U.S.A.
2005, 102, 14503–14508.
Article
CAS
Google Scholar
Peng, B.; Locascio, M.; Zapol, P.; Li, S. Y.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol.
2008, 3, 626–631.
Article
CAS
Google Scholar
Lu, Y.; Ganesan, Y.; Lou, J. A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exp. Mech.
2010, 50, 47–54.
Article
CAS
Google Scholar
Ganesan, Y.; Lu, Y.; Peng, C.; Lu, H.; Ballarini, R.; Lou, J. Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials. J. Microelectromech. Syst.
2010, 19, 675–682.
Article
Google Scholar
Eppell, S. J.; Smith, B. N.; Kahn, H.; Ballarini, R. Nano measurements with micro-devices: Mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface
2006, 3, 117–121.
Article
CAS
Google Scholar
Haque, M. A.; Saif, M. T. A. Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 6335–6340.
Article
CAS
Google Scholar
Guo, H.; Yan, P. F.; Wang, Y. B.; Tan, J.; Zhang, Z. F.; Sui, M. L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater.
2007, 6, 735–739.
Article
CAS
Google Scholar
Agrait, N.; Rubio, G.; Vieira, S. Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett.
1995, 74, 3995–3998.
Article
Google Scholar
Kizuka, T. Atomistic visualization of deformation in gold. Phys. Rev. B
1998, 57, 11158–11163.
Article
CAS
Google Scholar
Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun.
2010, 1, 1–8.
Article
Google Scholar
Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc.
2008, 130, 8902–8903.
Article
CAS
Google Scholar
Zheng K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D.; Ma, E. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun.
2010, 1, 1–8.
Article
Google Scholar
Howatson, A. M.; Lund, P. G.; Todd, J. D. Engineering Tables and Data, 2nd ed.; Chapman and Hall: London, 1991; p 41.
Google Scholar
Zhu, T.; Li, J.; Ogata, S.; Yip, S. Mechanics of ultra-strength materials. MRS Bull.
2009, 34, 167–172.
Article
CAS
Google Scholar
Rubio-Bollinger, G.; Bahn, S. R.; Agrait, N.; Jacobsen, K. W.; Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett.
2001, 87, 026101.
Article
Google Scholar
Ogata, S.; Li, J.; Hirosaki, N.; Shibutani, Y; Yip, S. Ideal shear strain of metals and ceramics. Phys. Rev. B
2004, 70, 104104.
Article
Google Scholar
Cai, J.; Ye, Y. Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B
1996, 54, 8398–8410.
Article
CAS
Google Scholar
Mei, J.; Davenport, J. W.; Fernando, G. W. Analytic embedded-atom potentials for fcc metals-application to liquid and solid copper. Phys Rev B
1991, 43, 4653–4658.
Article
Google Scholar
Grochola, G.; Russo, S. P.; Snook, I. K. On fitting a gold embedded atom method potential using the force matching method. J. Chem. Phys.
2005, 123, 204719.
Article
Google Scholar