Nano Research

, Volume 4, Issue 12, pp 1248–1260 | Cite as

Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice

Research Article

Abstract

Ultrasmall FeCo-graphitic carbon shell nanocrystals (FeCo/GC) are promising multifunctional materials capable of highly efficient drug delivery in vitro and magnetic resonance imaging in vivo. In this work, we demonstrate the use of FeCo/GC for highly effective cancer therapy through combined drug delivery, tumor-selective near-infrared photothermal therapy, and cancer imaging of a 4T1 syngeneic breast cancer model. The graphitic carbon shell of the ∼4 nm FeCo/GC readily loads doxorubicin (DOX) via π-π stacking and absorbs near-infrared light giving photothermal heating. When used for cancer treatment, intravenously administrated FeCo/GC-DOX led to complete tumor regression in 45% of mice when combined with 20 min of near-infrared laser irradiation selectively heating the tumor to 43–45 °C. In addition, the use of FeCo/GC-DOX results in reduced systemic toxicity compared with free DOX and appears to be safe in mice monitored for over 1 yr. FeCo/GC-DOX is shown to be a highly integrated nanoparticle system for synergistic cancer therapy leading to tumor regression of a highly aggressive tumor model. Open image in new window

Keywords

Nanocrystals photothermal therapy doxorubicin hyperthermia magnetic resonance imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_176_MOESM1_ESM.pdf (370 kb)
Supplementary material, approximately 370 KB.

References

  1. [1]
    Dewhirst, M. W. Future directions in hyperthermia biology. Int. J. Hyperthermia 1994, 10, 339–345.CrossRefGoogle Scholar
  2. [2]
    Falk, M. H.; Issels, R. D. Hyperthermia in oncology. Int. J. Hyperthermia 2001, 17, 1–18.CrossRefGoogle Scholar
  3. [3]
    Hahn, G. M.; Braun, J.; Harkedar, I. Thermochemotherapy: Synergism between hyperthermia (42–43°C) and adriamycin (or bleomycin) in mammalian cell inactivation. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 937–940.CrossRefGoogle Scholar
  4. [4]
    Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematolo 2002, 43, 33–56.CrossRefGoogle Scholar
  5. [5]
    Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497.CrossRefGoogle Scholar
  6. [6]
    Vertrees, R. A.; Jordan, J. M.; Zwischenberger, J. B. Hyperthermia and chemotherapy: The science. In Current Clinical Oncology: Intraperitoneal Cancer Therapy, Helm, C. W.; Edwards, R. P., Eds.; Humana Press Inc.: Totowa, NJ, 2007; pp 71–100.CrossRefGoogle Scholar
  7. [7]
    Helm, C. W.; Edwards, R. P. Current Clinical Oncology: Intraperitoneal Cancer Therapy; Humana Press Inc.: Totowa, NJ, 2007.CrossRefGoogle Scholar
  8. [8]
    Hildebrandt, B.; Wust, P. The biologic rationale of hyperthermia. Cancer Treat. Res. 2007, 134, 171–184.Google Scholar
  9. [9]
    Purushotham, S.; Chang, P. E. J.; Rumpel, H.; Kee, I. H. C.; Ng, R. T. H.; Chow, P. K. H.; Tan, C. K.; Ramanujan, R. V. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 2009, 20, 305101.CrossRefGoogle Scholar
  10. [10]
    Power, S.; Slattery, M. M.; Lee, M. J. Nanotechnology and its relationship to interventional radiology. Part II: Drug delivery, thermotherapy, and vascular intervention. Cardiovasc. Intervent. Radiol. 2011, 34, 676–690.CrossRefGoogle Scholar
  11. [11]
    Park, J. H.; von Maltzahn, G.; Ong, L. L.; Centrone, A.; Hatton, T. A.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanoparticles for tumor detection and photo-thermally triggered drug delivery. Adv. Mater. 2010, 22, 880–885.CrossRefGoogle Scholar
  12. [12]
    Park, J. H.; von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 981–986.CrossRefGoogle Scholar
  13. [13]
    Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.CrossRefGoogle Scholar
  14. [14]
    Lee, S. M.; Park, H.; Yoo, K. H. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater. 2010, 22, 4049–4053.CrossRefGoogle Scholar
  15. [15]
    Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 2009, 3, 2919–2926.CrossRefGoogle Scholar
  16. [16]
    Park, H.; Yang, J.; Seo, S.; Kim, K.; Suh, J.; Kim, D.; Haam, S.; Yoo, K. H. Multifunctional nanoparticles for photo-thermally controlled drug delivery and magnetic resonance imaging enhancement. Small 2008, 4, 192–196.CrossRefGoogle Scholar
  17. [17]
    Lee, J. H.; Sherlock, S. P.; Terashima, M.; Kosuge, H.; Suzuki, Y.; Goodwin, A.; Robinson, J.; Seo, W. S.; Liu, Z.; Luong, R. et al. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn. Reson. Med. 2009, 62, 1497–1509.CrossRefGoogle Scholar
  18. [18]
    Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.CrossRefGoogle Scholar
  19. [19]
    Sherlock, S. P.; Tabakman, S. M.; Xie, L. M.; Dai, H. J. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano 2011, 5, 1505–1512.CrossRefGoogle Scholar
  20. [20]
    Bausero, M. A.; Page, D. T.; Osinaga, E.; Asea, A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumor Biol. 2004, 25, 243–251.CrossRefGoogle Scholar
  21. [21]
    Working, P. K.; Dayan, A. D. Pharmacological-toxicological expert report: CAELYX. (Stealth liposomal doxorubicin HCl). Hum. Exp. Toxicol. 1996, 15, 751–785.Google Scholar
  22. [22]
    Seymour, L. W.; Ulbrich, K.; Strohalm, J.; Kopecek, J.; Duncan, R. The pharmacokinetics of polymer-bound adriamycin. Biochem. Pharmacol. 1990, 39, 1125–1131.CrossRefGoogle Scholar
  23. [23]
    Liu, D. L.; Andersson-Engels, S.; Sturesson, C.; Svanberg, K.; Hakansson, C. H.; Svanberg, S. Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy. Cancer Lett. 1997, 111, 157–165.CrossRefGoogle Scholar
  24. [24]
    Liu, P.; Zhang, A.; Xu, Y.; Xu, L. X. Study of non-uniform nanoparticle liposome extravasation in tumour. Int. J. Hyperthermia 2005, 21, 259–270.CrossRefGoogle Scholar
  25. [25]
    Lu, D.; Wientjes, M. G.; Lu, Z.; Au, J. L. Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther. 2007, 322, 80–88.CrossRefGoogle Scholar
  26. [26]
    Kosuge, H.; Sherlock, S. P.; Kitagawa, T.; Terashima, M.; Barral, J. K.; Nishimura, D. G.; Dai, H. J.; McConnell, M. V. FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation. PLoS One 2011, 6, e14523.CrossRefGoogle Scholar
  27. [27]
    Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660.CrossRefGoogle Scholar
  28. [28]
    Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 2009, 48, 7668–7672.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations