Nano Research

, Volume 4, Issue 12, pp 1242–1247 | Cite as

Chemical versus thermal folding of graphene edges

Research Article

Abstract

Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be ∼380 meV/Å (or about 800 meV per edge atom) and ∼50 meV/Å (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges. Open image in new window

Keywords

Adsorption graphene kinetics molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_175_MOESM1_ESM.pdf (153 kb)
Supplementary material, approximately 152 KB.
12274_2011_175_MOESM2_ESM.mpg (5.7 mb)
Supplementary material, approximately 5.67 MB.

Supplementary material, approximately 2.79 MB.

12274_2011_175_MOESM4_ESM.mpg (3 mb)
Supplementary material, approximately 3.01 MB.

Supplementary material, approximately 2.46 MB.

References

  1. [1]
    Yan, Q.; Huang, B.; Yu, J.; Zheng, F.; Zang, J.; Wu, J.; Gu, B.; Liu, F.; Duan, W. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 2007, 7, 1469–1473.CrossRefGoogle Scholar
  2. [2]
    Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.CrossRefGoogle Scholar
  3. [3]
    Huang, B.; Liu, F.; Wu, J.; Gu, B.; Duan, W. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Phys. Rev. B 2008, 77, 153411.CrossRefGoogle Scholar
  4. [4]
    Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y. W. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.CrossRefGoogle Scholar
  5. [5]
    Bets, K. V.; Yokobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2009, 2, 161–166.CrossRefGoogle Scholar
  6. [6]
    Huang, B.; Liu, M.; Su, N.; Wu, J.; Duan, W.; Gu, B.; Liu, F. Quantum manifestations of graphene edge stress and edge instability: A first-principles study. Phys. Rev. Lett. 2009, 102, 166404.CrossRefGoogle Scholar
  7. [7]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefGoogle Scholar
  8. [8]
    Gass, M. H.; Bangert, U.; Bleloch, A. L.; Wang, P.; Nair, R. R. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 2008, 3, 676–681.CrossRefGoogle Scholar
  9. [9]
    Liu, Z.; Suenage, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 2009, 102, 015501.CrossRefGoogle Scholar
  10. [10]
    Huang, J. Y.; Ding, F.; Yakobson, B. I.; Lu, P.; Qi, L.; Li, J. In situ observation of graphene sublimation and multi-layer edge reconstructions. P. Natl. Acad. Sci. U.S.A. 2009, 106, 10103–10108.CrossRefGoogle Scholar
  11. [11]
    Yu, W. J.; Chae, S. H.; Perello, D.; Lee, S. Y.; Han, G. H.; Yun, M.; Lee, Y. H. Synthesis of edge-closed graphene ribbons with enhanced conductivity. ACS Nano 2010, 4, 5480–5486.CrossRefGoogle Scholar
  12. [12]
    Cranford, S.; Sen, D.; Buehler, M. J. Meso-origami: Folding multilayer graphene sheets. Appl. Phys. Lett. 2009, 95, 123121.CrossRefGoogle Scholar
  13. [13]
    Cruz-Silva, E.; Botello-Méndez, A. R.; Barnett, Z. M.; Jia, X.; Dresselhaus, M. S.; Terrones, H.; Terrones, M.; Sumpter, B. G.; Meunier, V. Controlling edge morphology in graphene layers using electron irradiation: From sharp atomic edges to coalesced layers forming loops. Phys. Rev. Lett. 2010, 105, 045501.Google Scholar
  14. [14]
    Yu, D.; Liu, F. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 2007, 7, 3046–3050.CrossRefGoogle Scholar
  15. [15]
    Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.-Condens. Mat. 2002, 14, 783–802.CrossRefGoogle Scholar
  16. [16]
    Girifalco, L. A.; Lad, R. A. Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 1956, 25, 693–697.CrossRefGoogle Scholar
  17. [17]
    Zecho, T.; Guttler, A.; Sha, X. W.; Jackson, B.; Kuppers, J. Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface. J. Chem. Phys. 2002, 117, 8486–8492.CrossRefGoogle Scholar
  18. [18]
    Xie, X.; Ju, L.; Feng, X.; Sun, Y.; Zhou, R.; Liu, K.; Fan, S.; Li, Q.; Jiang, K. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565–2570.CrossRefGoogle Scholar
  19. [19]
    Sidorov, A.; Mudd, D.; Sumanasekera, G.; Ouseph, P. J.; Jayanthi, C. S.; Wu, S. Y. Electrostatic deposition of graphene in a gaseous environment: A deterministic route for synthe-sizing rolled graphenes. Nanotechnology 2009, 20, 055611.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations