Nano Research

, Volume 4, Issue 12, pp 1233–1241 | Cite as

One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane

  • Kengo Aranishi
  • Hai-Long Jiang
  • Tomoki Akita
  • Masatake Haruta
  • Qiang Xu
Research Article

Abstract

Magnetically recyclable Au/Co/Fe core-shell nanoparticles (NPs) have been successfully synthesized via a one-step in situ procedure. Transmission electron microscope (TEM), energy dispersive X-ray spectroscopic (EDS), and electron energy-loss spectroscopic (EELS) measurements revealed that the trimetallic Au/Co/Fe NPs have a triple-layered core-shell structure composed of a Au core, a Co-rich inter-layer, and a Fe-rich shell. The Au/Co/Fe core-shell NPs exhibit much higher catalytic activities for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) than the monometallic (Au, Co, Fe) or bimetallic (AuCo, AuFe, CoFe) counterparts. Open image in new window

Keywords

Triple-layered core-shell nanoparticles heterogeneous catalysis ammonia borane hydrogen generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_174_MOESM1_ESM.pdf (921 kb)
Supplementary material, approximately 920 KB.

References

  1. [1]
    Toshima, N.; Harada, M.; Yonezawa, T.; Kushihashi, K.; Asakura, K. Structural analysis of polymer-protected Pd/Pt bimetallic clusters as dispersed catalysts by using extended X-ray absorption fine structure spectroscopy. J. Phys. Chem. 1991, 95, 7448–7453.CrossRefGoogle Scholar
  2. [2]
    Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.CrossRefGoogle Scholar
  3. [3]
    Toshima, N.; Kanemaru, M.; Shiraishi, Y.; Koga, Y. Spontaneous formation of core/shell bimetallic nanoparticles: A calorimetric study. J. Phys. Chem. B 2005, 109, 16326–16331.CrossRefGoogle Scholar
  4. [4]
    Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc. 2005, 127, 1015–1024.CrossRefGoogle Scholar
  5. [5]
    Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.CrossRefGoogle Scholar
  6. [6]
    Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.CrossRefGoogle Scholar
  7. [7]
    Yang, J.; Sargent, E. H.; Kelley, S. O.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–689.CrossRefGoogle Scholar
  8. [8]
    Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. One-step synthesis of Au@Pd core-shell nanooctahedron. J. Am. Chem. Soc. 2009, 131, 17036–17037.CrossRefGoogle Scholar
  9. [9]
    Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J. Am. Chem. Soc. 2010, 132, 5576–5577.CrossRefGoogle Scholar
  10. [10]
    Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.CrossRefGoogle Scholar
  11. [11]
    Zhang, Z. Y.; Nenoff, T. M.; Leung, K.; Ferreira, S. R.; Huang, J. Y.; Berry, D. T.; Provencio, P. P.; Stumpft, R. Room-temperature synthesis of Ag-Ni and Pd-Ni alloy nanoparticles. J. Phys. Chem. C 2010, 114, 14309–14318.Google Scholar
  12. [12]
    Jiang, H. L.; Umegaki, T.; Akita, T.; Zhang, X. B.; Haruta, M.; Xu, Q. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: Synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Chem. Eur. J. 2010, 16, 3132–3137.CrossRefGoogle Scholar
  13. [13]
    Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.CrossRefGoogle Scholar
  14. [14]
    Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.CrossRefGoogle Scholar
  15. [15]
    Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Magnetically recyclable Fe-Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere. J. Power Sources 2009, 194, 478–481.CrossRefGoogle Scholar
  16. [16]
    Yan, J. M.; Zhang, X. B.; Akita, T.; Haruta, M.; Xu, Q. One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: Highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 5326–5327.CrossRefGoogle Scholar
  17. [17]
    Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 7848–7849.CrossRefGoogle Scholar
  18. [18]
    Toshima, N.; Ito, R.; Matsushita, T.; Shiraishi, Y. Trimetallic nanoparticles having a Au-core structure. Catal. Today 2007, 122, 239–244.CrossRefGoogle Scholar
  19. [19]
    Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 9368–9372.CrossRefGoogle Scholar
  20. [20]
    Wang, L.; Yamauchi, Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt Shell. J. Am. Chem. Soc. 2010, 132, 13636–13638.CrossRefGoogle Scholar
  21. [21]
    Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.CrossRefGoogle Scholar
  22. [22]
    Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. B-N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293.CrossRefGoogle Scholar
  23. [23]
    Gutowska, A.; Li, L. Y.; Shin, Y. S.; Wang, C. M. M.; Li, X. H. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. 2005, 44, 3578–3582.CrossRefGoogle Scholar
  24. [24]
    Bluhm, M. E.; Bradley, M. G.; Butterick, R.; Kusari, U.; Sneddon, L. G. Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc. 2006, 128, 7748–7749.CrossRefGoogle Scholar
  25. [25]
    Diyabalanage, H. V. K.; Shrestha, R. P.; Semelsberger, T. A.; Scott, B. L.; Bowden, M. E.; Davis, B. L.; Burrell, A. K. Calcium amidotrihydroborate: A hydrogen storage material. Angew. Chem. Int. Ed. 2007, 46, 8995–8997.CrossRefGoogle Scholar
  26. [26]
    Xiong, Z. T.; Yong, C. K.; Wu, G. T.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat. Mater. 2008, 7, 138–141.CrossRefGoogle Scholar
  27. [27]
    Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.CrossRefGoogle Scholar
  28. [28]
    Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J. Power Sources 2006, 163, 364–370.CrossRefGoogle Scholar
  29. [29]
    Xu, Q.; Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia-borane. J. Alloys. Compd. 2007, 446, 729–732.CrossRefGoogle Scholar
  30. [30]
    Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem. Int. Ed. 2008, 47, 2287–2289.CrossRefGoogle Scholar
  31. [31]
    Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrogen Energy 2009, 34, 2303–2311.CrossRefGoogle Scholar
  32. [32]
    Jiang, H. L.; Singh, S. K.; Yan, J. M.; Zhang, X. B.; Xu, Q. Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem 2010, 3, 541–549.CrossRefGoogle Scholar
  33. [33]
    Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.CrossRefGoogle Scholar
  34. [34]
    Çalişkan, S.; Zahmakiran, M.; Özkar, S. Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane. Appl. Catal. B-Environ. 2010, 93, 387–394.CrossRefGoogle Scholar
  35. [35]
    Demirci, U. B.; Miele, P. Hydrolysis of solid ammonia borane. J. Power Sources 2010, 195, 4030–4035.CrossRefGoogle Scholar
  36. [36]
    Jiang, H. L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63.CrossRefGoogle Scholar
  37. [37]
    Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. Efficient catalysis of ammonia borane dehydrogenation. J. Am. Chem. Soc. 2006, 128, 12048–12049.CrossRefGoogle Scholar
  38. [38]
    Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc. 2007, 129, 1844–1845.CrossRefGoogle Scholar
  39. [39]
    Stephens, F. H.; Pons, V.; Baker, R. T. Ammonia-borane: The hydrogen source par excellence? Dalton Trans. 2007, 2613–2626.Google Scholar
  40. [40]
    Yao, C. F.; Zhuang, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts. Int. J. Hydrogen Energy 2008, 33, 2462–2467.CrossRefGoogle Scholar
  41. [41]
    Kalidindi, S. B.; Sanyal, U.; Jagirdar, B. R. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys. Chem. Chem. Phys. 2008, 10, 5870–5874.CrossRefGoogle Scholar
  42. [42]
    Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Hollow Ni-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J. Power Sources 2009, 191, 209–216.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kengo Aranishi
    • 1
    • 2
  • Hai-Long Jiang
    • 1
  • Tomoki Akita
    • 1
    • 4
  • Masatake Haruta
    • 3
    • 4
  • Qiang Xu
    • 1
    • 2
    • 4
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)Ikeda, OsakaJapan
  2. 2.Graduate School of EngineeringKobe UniversityNada Ku, Kobe, HyogoJapan
  3. 3.Graduate School of Urban Environmental SciencesTokyo Metropolitan UniversityMinami-Osawa, Hachioji, TokyoJapan
  4. 4.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)Kawaguchi, SaitamaJapan

Personalised recommendations