Nano Research

, Volume 4, Issue 12, pp 1223–1232 | Cite as

Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures

Research Article


Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 °C in the presence of oleylamine and oleic acid. The diameters of the as-synthesized iron oxide NPs decrease with increasing concentrations of iron oleate complex and oleic acid/oleylamine. In addition, the size-dependent crystallinity and magnetic properties of iron oxide NPs are presented. It is found that larger iron oxide NPs have a higher degree of crystallinity and saturation magnetization. More importantly, various M-iron oxide heterostructures (M = Au, Ag, Pt, Pd) have been successfully fabricated by using the same synthesis procedure. The iron oxide NPs are grown over the pre-made metal seeds through a seed-mediated growth process. The physicochemical properties of Au-Fe3O4 heterostructures have been characterized by X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry and UV-vis spectroscopy. The as-synthesized Au-Fe3O4 heterostructures show a red-shift in surface plasmon resonance peak compared with Au NPs and similar magnetic properties to Fe3O4 NPs. The heterojunction effects present in such nanostructures offer the opportunity to tune the irphysicochemical properties. Therefore, this synthesis process can be regarded as an efficient way to fabricate a series of heterostructures for a variety of applications. Open image in new window


Iron oxides heterostructures noble metal-iron oxide nanoparticles monodisperse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_173_MOESM1_ESM.pdf (844 kb)
Supplementary material, approximately 843 KB.


  1. [1]
    Lu, A. H.; Salabas, E. L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.CrossRefGoogle Scholar
  2. [2]
    Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.CrossRefGoogle Scholar
  3. [3]
    Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542.CrossRefGoogle Scholar
  4. [4]
    Jolivet, J. P.; Chaneac, C.; Tronc, E. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 2004, 481–487.Google Scholar
  5. [5]
    Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785.CrossRefGoogle Scholar
  6. [6]
    Si, S. F.; Li, C. H.; Wang, X.; Yu, D. P.; Peng, Q.; Li, Y. D. Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth. Des. 2005, 5, 391–393.CrossRefGoogle Scholar
  7. [7]
    Sun, S.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205.CrossRefGoogle Scholar
  8. [8]
    Park, J.; Lee, E.; Hwang, N. M.; Kang, M. S.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kini, J. Y.; Park, J. H.; Hyeon, T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 2872–2877CrossRefGoogle Scholar
  9. [9]
    Kovalenko, M. V.; Bodnarchuk, M. I.; Lechner, R. T.; Hesser, G.; Schaffler, F.; Heiss, W. Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: The case of inverse spinel iron oxide. J. Am. Chem. Soc. 2007, 129, 6352–6353.CrossRefGoogle Scholar
  10. [10]
    Shavel, A.; Rodriguez-Gonzalez, B.; Pacifico, J.; Spasova, M.; Farle, M.; Liz-Marzan, L. M. Shape control in iron oxide nanocrystal synthesis, induced by trioctylammonium ions. Chem. Mater. 2009, 21, 1326–1332.CrossRefGoogle Scholar
  11. [11]
    Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. H. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc. 2004, 126, 11458–11459.CrossRefGoogle Scholar
  12. [12]
    Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.CrossRefGoogle Scholar
  13. [13]
    Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931–3935.CrossRefGoogle Scholar
  14. [14]
    Cheon, J. W.; Kang, N. J.; Lee, S. M.; Lee, J. H.; Yoon, J. H.; Oh, S. J. Shape evolution of single-crystalline iron oxide nanocrystals. J. Am. Chem. Soc. 2004, 126, 1950–1951.CrossRefGoogle Scholar
  15. [15]
    Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.CrossRefGoogle Scholar
  16. [16]
    Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B. Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127, 34–35.CrossRefGoogle Scholar
  17. [17]
    Jiang, J.; Gu, H. W.; Shao, H. L.; Devlin, E.; Papaefthymiou, G. C.; Ying, J. Y. Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 2008, 20, 4403–4407.CrossRefGoogle Scholar
  18. [18]
    Wang, C.; Xu, C. J.; Zeng, H.; Sun, S. H. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. 2009, 21, 3045–3052.CrossRefGoogle Scholar
  19. [19]
    Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.CrossRefGoogle Scholar
  20. [20]
    Choi, S. H.; Na, B. H.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M.; Moon, J.; Son, J. S.; Song, I. C.; Moon, W. K.; Hyeon, T. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573–15580.CrossRefGoogle Scholar
  21. [21]
    Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 3158–3163.CrossRefGoogle Scholar
  22. [22]
    Jang, Y.; Chung, J.; Kim, S.; Jun, S. W.; Kim, B. H.; Lee, D. W.; Kim, B. M.; Hyeon, T. Simple synthesis of Pd-Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Phys. Chem. Chem. Phys. 2011, 13, 2512–2516.CrossRefGoogle Scholar
  23. [23]
    Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229–234.CrossRefGoogle Scholar
  24. [24]
    Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 2917–2921.Google Scholar
  25. [25]
    Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.CrossRefGoogle Scholar
  26. [26]
    Xie, J.; Peng, S.; Brower, N.; Pourmand, N.; Wang, S. X.; Sun, S. H. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem. 2006, 78, 1003–1014.CrossRefGoogle Scholar
  27. [27]
    Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393–403.CrossRefGoogle Scholar
  28. [28]
    Xu, Z. C.; Shen, C. M.; Hou, Y. L.; Gao, H. J.; Sun, S. S. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 2009, 21, 1778–1780.CrossRefGoogle Scholar
  29. [29]
    Shen, L. F.; Laibinis, P. E.; Hatton, T. A. Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir 1999, 15, 447–453.CrossRefGoogle Scholar
  30. [30]
    Cornell, M. R.; Schwertmann, U. The Iron Oxides; VCH: New York, 1996; p. 117.Google Scholar
  31. [31]
    Zhen, G.; Muir, B. W.; Moffat, B. A.; Harbour, P.; Murray, K. S.; Moubaraki, B.; Suzuki, K.; Madsen, I.; Agron-Olshina, N.; Waddington, L.; Mulvaney, P.; Hartley, P. G. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C, 2011, 115, 327–334.CrossRefGoogle Scholar
  32. [32]
    Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M. I.; Serna, C. J. Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 1999, 11, 3058–3064.CrossRefGoogle Scholar
  33. [33]
    Lee, Y.; Loew, A.; Sun, S. Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction. Chem. Mater. 2010, 22, 755–761.CrossRefGoogle Scholar
  34. [34]
    Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.CrossRefGoogle Scholar
  35. [35]
    Hiramatsu, H.; Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509–2511.CrossRefGoogle Scholar
  36. [36]
    Zhang, H. T.; Ding, J.; Chow, G. M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24, 375–378.CrossRefGoogle Scholar
  37. [37]
    Teng, X. W.; Yang, H. Synthesis of platinum multipods: An induced anisotropic growth. Nano Lett. 2005, 5, 885–891.CrossRefGoogle Scholar
  38. [38]
    Song, H; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. D. Pt nanocrystals: Shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 2005, 109, 188–193.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and Environmental SciencesTsing Hua UniversityHsinchuTaiwan
  2. 2.Department of Chemistry and State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijingChina

Personalised recommendations