Nano Research

, Volume 4, Issue 12, pp 1199–1207 | Cite as

An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements

  • Yang Yang
  • Zhaobin Chen
  • Junyang Liu
  • Miao Lu
  • Dezhi Yang
  • Fangzu Yang
  • Zhongqun Tian
Research Article

Abstract

We report an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach to investigating single molecule conductance. Electrode pairs connected with a gold nanobridge were fabricated by electrochemical deposition and then mounted on a homebuilt MCBJ platform. A large number of Au- molecule-Au junctions were produced sequentially by repeated breaking and reconnecting of the gold nanobridge. In order to measure their single molecule conductance, statistical conductance histograms were generated for benzene-1,4-dithiol (BDT) and 4,4′-bipyridine (BPY). The values extracted from these histograms were found to be in the same range as values previously reported in the literature. Our method is distinct from the ones used to acquire these previously reported literature values, however, in that it is faster, simpler, more cost-effective, and changing the electrode material is more convenient. Open image in new window

Keywords

Single molecule junction conductance kelectrochemical deposition kmechanically controlled break junction (MCBJ) benzene-1,4-dithiol kbipyridine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277–283.CrossRefGoogle Scholar
  2. [2]
    McCreery, R. L.; Bergren, A. J. Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication. Adv. Mater. 2009, 21, 4303–4322.CrossRefGoogle Scholar
  3. [3]
    Ulgut, B.; Abruna, H. D. Electron transfer through molecules and assemblies at electrode surfaces. Chem. Rev. 2008, 108, 2721–2736.CrossRefGoogle Scholar
  4. [4]
    Nedelcu, M.; Saifullah, M. S. M.; Hasko, D. G.; Jang, A.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E.; Kang, D. J.; Steiner, U. Fabrication of sub-10 nm metallic lines of low line-width roughness by hydrogen reduction of patterned metal-organic materials. Adv. Funct. Mater. 2010, 20, 2317–2323.CrossRefGoogle Scholar
  5. [5]
    Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R. Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory. Phys. Rev. Lett. 2002, 89, 086802.CrossRefGoogle Scholar
  6. [6]
    Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Hobenreich, H.; Schiffrin, D. J.; Nichols, R. J. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 2003, 125, 15294–15295.CrossRefGoogle Scholar
  7. [7]
    Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.CrossRefGoogle Scholar
  8. [8]
    Strachan, D. R.; Smith, D. E.; Johnston, D. E.; Park, T. H.; Therien, M. J.; Bonnell, D. A.; Johnson, A. T. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 2005, 86, 043109.CrossRefGoogle Scholar
  9. [9]
    Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.CrossRefGoogle Scholar
  10. [10]
    Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F. Charge transport in single Au|alkanedithiol|Au junctions: Coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 2008, 130, 318–326.CrossRefGoogle Scholar
  11. [11]
    Fujihira, M.; Suzuki, M.; Fujii, S.; Nishikawa, A. Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: Effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold. Phys. Chem. Chem. Phys. 2006, 8, 3876–3884.CrossRefGoogle Scholar
  12. [12]
    Jang, S. Y.; Reddy, P.; Majumdar, A.; Segalman, R. A. Interpretation of stochastic events in single molecule conductance measurements. Nano Lett. 2006, 6, 2362–2367.CrossRefGoogle Scholar
  13. [13]
    Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.CrossRefGoogle Scholar
  14. [14]
    Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 2008, 130, 13198–13199.CrossRefGoogle Scholar
  15. [15]
    Gonzalez, M. T.; Wu, S. M.; Huber, R.; van der Molen, S. J.; Schonenberger, C.; Calame, M. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 2006, 6, 2238–2242.CrossRefGoogle Scholar
  16. [16]
    Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Experimental observation of the transition from weak link to tunnel junction. Physica C 1992, 191, 485–504.CrossRefGoogle Scholar
  17. [17]
    Agraït, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.CrossRefGoogle Scholar
  18. [18]
    Li, J. Z.; Yamada, Y.; Murakoshi, K.; Nakato, Y. Sustainable metal nano-contacts showing quantized conductance prepared at a gap of thin metal wires in solution. Chem. Commun. 2001, 2170–2171.Google Scholar
  19. [19]
    Li, C. Z.; Tao, N. J. Quantum transport in metallic nano- wires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 1998, 72, 894–896.CrossRefGoogle Scholar
  20. [20]
    Xiang, J.; Liu, B.; Wu, S. T.; Ren, B.; Yang, F. Z.; Mao, B. W.; Chow, Y. L.; Tian, Z. Q. A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew. Chem. Int. Edit. 2005, 44, 1265–1268.CrossRefGoogle Scholar
  21. [21]
    Yang, Y.; Liu, J. Y.; Chen, Z. B.; Tian, J. H.; Jin, X.; Liu, B.; Li, X.; Luo, Z. Z.; Lu, M.; Yang, F. Z., et al. Conductance histogram evolution of an EC-MCBJ fabricated Au atomic point contact. Nanotechnology 2011, 22, 275313.CrossRefGoogle Scholar
  22. [22]
    Tian, J. H.; Yang, Y.; Liu, B.; Schollhorn, B.; Wu, D. Y.; Maisonhaute, E.; Muns, A. S.; Chen. Y.; Amatore. C.; Tao, N. J., et al. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules. Nanotechnology 2010, 21, 274012.CrossRefGoogle Scholar
  23. [23]
    Scheer, E.; Agraït, N.; Cuevas, J. C.; Yeyati, A. L.; Ludoph, B.; Martin-Rodero, A.; Bollinger, G. R.; van Ruitenbeek, J. M.; Urbina, C. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 1998, 394, 154–157.CrossRefGoogle Scholar
  24. [24]
    Tsutsui, M.; Shoji, K.; Taniguchi, M.; Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 2008, 8, 345–349.CrossRefGoogle Scholar
  25. [25]
    Ittah, N.; Yutsis, I.; Selzer, Y. Fabrication of highly stable configurable metal quantum point contacts. Nano Lett. 2008, 8, 3922–3927.CrossRefGoogle Scholar
  26. [26]
    Costa-Kramer, J. L.; Garcia, N.; Garcia-Mochales, P.; Serena, P. A. Nanowire formation in macroscopic metallic contacts: Quantum mechanical conductance tapping a table top. Surf. Sci. 1995, 342, L1144–L1149.CrossRefGoogle Scholar
  27. [27]
    Lin, L. L.; Wang, C. K.; Luo, Y. Inelastic electron tunneling spectroscopy of gold-benzenedithiol-gold junctions: Accurate determination of molecular conformation. ACS Nano 2011, 5, 2257–2263.CrossRefGoogle Scholar
  28. [28]
    Yeganeh, S.; Ratner, M. A.; Galperin, M.; Nitzan, A. Transport in state space: Voltage-dependent conductance calculations of benzene-1,4-dithiol. Nano Lett. 2009, 9, 1770–1774.CrossRefGoogle Scholar
  29. [29]
    Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Observation of molecular orbital gating. Nature 2009, 462, 1039–1043.CrossRefGoogle Scholar
  30. [30]
    Lortscher, E.; Weber. H. B.; Riel, H. Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 2007, 98, 176807.CrossRefGoogle Scholar
  31. [31]
    Ghosh, S.; Halimun, H.; Mahapatro, A. K.; Choi, J.; Lodha, S.; Janes, D. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 2005, 87, 233509.CrossRefGoogle Scholar
  32. [32]
    Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Measurement of single molecule conductance: Benzenedithiol and benzenedime-thanethiol. Nano Lett. 2004, 4, 267–271.CrossRefGoogle Scholar
  33. [33]
    Tsutsui, M.; Taniguchi, M.; Kawai, T. Atomistic mechanics and formation mechanism of metal-molecule-metal junctions. Nano Lett. 2009, 9, 2433–2439.CrossRefGoogle Scholar
  34. [34]
    Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. Lithographic mechanical break junctions for single-molecule measurements in vacuum: Possibilities and limitations. New J. Phys. 2008, 10, 065008.CrossRefGoogle Scholar
  35. [35]
    Ulrich, J.; Esrail, D.; Pontius, W.; Venkataraman, L.; Millar, D.; Doerrer, L. H. Variability of conductance in molecular junctions. J. Phys. Chem. B 2006, 110, 2462–2466.CrossRefGoogle Scholar
  36. [36]
    Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N.; Tian, Z. Q. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 2006, 128, 14748–14749.CrossRefGoogle Scholar
  37. [37]
    Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y.; Nordlander, P.; Natelson, D. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007, 7, 1396–1400.CrossRefGoogle Scholar
  38. [38]
    Ioffe, Z.; Shamai, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.; Cheshnovsky, O.; Selzer, Y. Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 2008, 3, 727–732.CrossRefGoogle Scholar
  39. [39]
    Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 2006, 6, 458–462.CrossRefGoogle Scholar
  40. [40]
    Hou, S.; Zhang, J.; Li, R.; Ning, J.; Han, R.; Shen, Z.; Zhao, X.; Xue, Z.; Wu, Q. First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology 2005, 16, 239–244.CrossRefGoogle Scholar
  41. [41]
    Stadler, R.; Jacobsen, K. Fermi level alignment in molecular nanojunctions and its relation to charge transfer. Phys. Rev. B 2006, 74, 161405.CrossRefGoogle Scholar
  42. [42]
    Li, Z.; Kosov, D. S. Dithiocarbamate anchoring in molecular wire junctions: A first principles study. J. Phys. Chem. B 2006, 110, 9893–9898.CrossRefGoogle Scholar
  43. [43]
    Wang, C.; Batsanov, A. S.; Bryce, M. R.; Martín, S.; Nichols, R. J.; Higgins, S. J.; García-Suárez, V. C. M.; Lambert, C. J. Oligoyne Single Molecule Wires. J. Am. Chem. Soc. 2009, 131, 15647–15654.CrossRefGoogle Scholar
  44. [44]
    Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 2009, 4, 230–234.CrossRefGoogle Scholar
  45. [45]
    Zhou, X. S.; Chen, Z. B.; Liu, S. H.; Jin, S.; Liu, L.; Zhang, H. M.; Xie, Z. X.; Jiang, Y. B.; Mao, B. W. Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C 2008, 112, 3935–3940.CrossRefGoogle Scholar
  46. [46]
    Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X., et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yang Yang
    • 1
  • Zhaobin Chen
    • 1
  • Junyang Liu
    • 1
  • Miao Lu
    • 2
  • Dezhi Yang
    • 1
  • Fangzu Yang
    • 1
  • Zhongqun Tian
    • 1
  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Micro-Electro-Mechanical Systems Research Center, Pen-Tung Sah Micro-Nano Technology InstituteXiamen UniversityXiamenChina

Personalised recommendations