Nano-morphology of a polymer electrolyte fuel cell catalyst layer—imaging, reconstruction and analysis

Abstract

The oxygen reduction reaction (ORR) in the cathode catalyst layer (CCL) of polymer electrolyte fuel cells (PEFC) is one of the major causes of performance loss during operation. In addition, the CCL is the most expensive component due to the use of a Pt catalyst. Apart from the ORR itself, the species transport to and from the reactive sites determines the performance of the PEFC. The effective transport properties of the species in the CCL depend on its nanostructure. Therefore a three-dimensional reconstruction of the CCL is required. A series of two-dimensional images was obtained from focused ion beam — scanning electron microscope (FIB-SEM) imaging and a segmentation method for the two-dimensional images has been developed. The pore size distribution (PSD) was calculated for the three-dimensional geometry. The influence of the alignment and the anisotropic pixel size on the PSD has been investigated. Pores were found in the range between 5 nm and 205 nm. Evaluation of the Knudsen number showed that gas transport in the CCL is governed by the transition flow regime. The liquid water transport can be described within continuum hydrodynamics by including suitable slip flow boundary conditions.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Yang, H.; Zhao, T. S.; Ye, Q. Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells. J. Power Sources 2005, 142, 117–124.

    Article  CAS  Google Scholar 

  2. [2]

    Manke, I.; Hartnig, C.; Gruenerbel, M.; Lehnert, W.; Kardjilov, N.; Haibel, A.; Hilger, A.; Banhart, J.; Riesemeier, H. Investigation of water evolution and transport in fuel cells with high resolution synchrotron X-ray radiography. Appl. Phys. Lett. 2007, 90, 174105.

    Article  Google Scholar 

  3. [3]

    Schroeder, A.; Wippermann, K.; Mergel, J.; Lehnert, W.; Stolten, D.; Sanders, T.; Baumhöfer, T.; Sauer, D. U.; Manke, I.; Kardjilov, N. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells. Electrochem. Commun. 2009, 11, 1606–1609.

    Article  CAS  Google Scholar 

  4. [4]

    Sinha, P. K.; Halleck, P.; Wang, C. Y. Quantification of liquid water saturation in a PEM fuel cell diffusion medium using X-ray microtomography. Electrochem. Solid-state Lett. 2006, 9, A344–A348.

    Article  CAS  Google Scholar 

  5. [5]

    Ziegler, C.; Gerteisen, D. Validity of two-phase polymer electrolyte membrane fuel cell models with respect to the gas diffusion layer. J. Power Sources 2009, 188, 184–191.

    Article  CAS  Google Scholar 

  6. [6]

    Xie, Z.; Navessin, T.; Shi, K.; Chow, R.; Wang, Q.; Song, D.; Andreaus, B.; Eikerling, M.; Liu, Z.; Holdcroft, S. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells. J. Electrochem. Soc. 2005, 152, A1171–A1179.

    Article  CAS  Google Scholar 

  7. [7]

    Gerteisen, D.; Heilmann, T.; Ziegler, C. Modeling the phenomena of dehydration and flooding of a polymer electrolyte membrane fuel cell. J. Power Sources 2009, 187, 165–181.

    Article  CAS  Google Scholar 

  8. [8]

    Eikerling, M. Water management in cathode catalyst layers of PEM fuel cells. J. Electrochem. Soc. 2006, 153, E58–E70.

    Article  CAS  Google Scholar 

  9. [9]

    Torquato, S.; Haslach, H. W. Jr. Random Heterogeneous Materials: Microstructure and Macroscopic Properties; Springer: New York, 2002.

    Google Scholar 

  10. [10]

    Mukherjee, P. P.; Wang, C. Y. Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells. J. Electrochem. Soc. 2007, 154, B1121–B1131.

    Article  CAS  Google Scholar 

  11. [11]

    Levitz, P. Off-lattice reconstruction of porous media: Critical evaluation, geometrical confinement and molecular transport. Adv. Colloid. Interf. Sci. 1998, 76, 71–106.

    Article  Google Scholar 

  12. [12]

    Torquato, S. Statistical description of microstructures. Annu. Rev. Mater. Res. 2002, 32, 77–111.

    Article  CAS  Google Scholar 

  13. [13]

    Kim, S. H.; Pitsch, H. Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J. Electrochem. Soc. 2009, 156, B673–B681.

    Article  CAS  Google Scholar 

  14. [14]

    Siddique, N. A.; Liu, F. Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer. Electrochim. Acta 2010, 55, 5357–5366.

    Article  CAS  Google Scholar 

  15. [15]

    Möbus, G.; Inkson, B. J. Nanoscale tomography in materials science. Mater. Today 2007, 10, 18–25.

    Article  Google Scholar 

  16. [16]

    Holzer, L.; Indutnyi, F.; Gasser, P. H.; Munch, B.; Wegmann, M. Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J. Microscopy 2004, 216, 84–95.

    Article  CAS  Google Scholar 

  17. [17]

    Wilson, J. R.; Kobsiriphat, W.; Mendoza, R.; Chen, H. Y.; Hiller, J. M.; Miller, D. J.; Thornton, K.; Voorhees, P. W.; Adler, S. B.; Barnett, S. A. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 2006, 5, 541–544.

    Article  CAS  Google Scholar 

  18. [18]

    Ziegler, C.; Thiele, S.; Zengerle, R. Direct three-dimensional reconstruction of a nanoporous catalyst layer for a polymer electrolyte fuel cell. J. Power Sources 2011, 196, 2094–2097.

    Article  CAS  Google Scholar 

  19. [19]

    Holzer, L.; Muench, B.; Wegmann, M.; Gasser, P.; Flatt, R. J. FIB-nanotomography of particulate systems—Part I: Particle shape and topology of interfaces. J. Amer. Ceram. Soc. 2006, 89, 2577–2585.

    Article  CAS  Google Scholar 

  20. [20]

    Abramoff, M. D.; Magalhaes, P. J.; Ram, S. J. Image processing with ImageJ. Biophoton. Int. 2004, 11, 36–43.

    Google Scholar 

  21. [21]

    Thevenaz, P.; Ruttimann, U. E.; Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 1998, 7, 27–41.

    Article  CAS  Google Scholar 

  22. [22]

    Pal, N. R.; Pal, S. K. A review on image segmentation techniques. Pattern Recog. 1993, 26, 1277–1294.

    Article  Google Scholar 

  23. [23]

    Munch, B.; Gasser, P.; Holzer, L.; Flatt, R. FIBNanotomography of particulate systems—Part II: Particle recognition and effect of boundary truncation. J. Amer. Ceram. Soc. 2006, 89, 2586–2595.

    Article  CAS  Google Scholar 

  24. [24]

    Ohser, J.; Mücklich, F. Statistical Analysis of Microstructures in Materials Science; John Wiley: New York, 2000.

    Google Scholar 

  25. [25]

    Wilson, J. R.; Cronin, J. S.; Barnett, S. A.; Harris, S. J. Measurement of three-dimensional microstructure in a LiCoO2 positive electrode J. Power Sources 2011, 196, 3443–3447.

    Article  CAS  Google Scholar 

  26. [26]

    Fischer, A.; Jindra, J.; Wendt, H. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. J. Appl. Electrochem. 1998, 28, 277–282.

    Article  CAS  Google Scholar 

  27. [27]

    Delerue, J. F.; Perrier, E.; Yu, Z. Y.; Velde, B. New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils. Phys. Chem Earth A: Solid Earth Geodesy 1999, 24, 639–644.

    Article  Google Scholar 

  28. [28]

    Soboleva, T.; Zhao, X.; Malek, K.; Xie, Z.; Navessin, T.; Holdcroft, S. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl. Mater. Interf. 2010, 2, 375–384.

    Article  CAS  Google Scholar 

  29. [29]

    Karniadakis, G.; Beskok, A.; Aluru, N. R. Microflows and Nanoflows: Fundamentals and Simulation; Springer Verlag: Berlin, 2005.

    Google Scholar 

  30. [30]

    Schaaf, S. A.; Chambré, P. L. Flow of Rarefied Gases; Princeton University Press: Princeton, 1961.

    Google Scholar 

  31. [31]

    Gad-El-Hak, M. Gas and liquid transport at the microscale. Heat Transf. Eng. 2006, 27, 13–29.

    Article  CAS  Google Scholar 

  32. [32]

    Oran, E. S.; Oh, C. K.; Cybyk, B. Z. Direct simulation Monte Carlo: Recent advances and applications. Annu. Rev. Fluid Mech. 1998, 30, 403–441.

    Article  Google Scholar 

  33. [33]

    Shen, C.; Tian, D. B.; Xie, C.; Fan, J. Examination of the LBM in simulation of microchannel flow in transitional regime. Nanoscale Microscale Thermophys. Eng. 2004, 8, 423–432.

    Article  Google Scholar 

  34. [34]

    Kim, S. H.; Pitsch, H.; Boyd, I. D. Lattice Boltzmann modeling of multicomponent diffusion in narrow channels. Phys. Rev. E 2009, 79, 16702.

    Article  Google Scholar 

  35. [35]

    Zalc, J. M.; Reyes, S. C.; Iglesia, E. Monte Carlo simulations of surface and gas phase diffusion in complex porous structures. Chem. Eng. Sci. 2003, 58, 4605–4617.

    Article  CAS  Google Scholar 

  36. [36]

    Johnson, R. W. The Handbook of Fluid Dynamics; Springer: Heidelberg, 1998.

    Google Scholar 

  37. [37]

    Cheng, J. T.; Giordano, N. Fluid flow through nanometerscale channels. Phys. Rev. E 2002, 65, 31206.

    Article  CAS  Google Scholar 

  38. [38]

    Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometre films. Nature 2001, 413, 51–54.

    Article  CAS  Google Scholar 

  39. [39]

    Raviv, U.; Klein, J. Fluidity of bound hydration layers. Science 2002, 297, 1540–1543.

    Article  CAS  Google Scholar 

  40. [40]

    Leng, Y.; Cummings, P. T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys. Rev. Lett. 2005, 94, 26101.

    Article  Google Scholar 

  41. [41]

    Thomas, J. A.; McGaughey, A. J. H. Water flow in carbon nanotubes: Transition to subcontinuum transport. Phys. Review Lett. 2009, 102, 184502.

    Article  Google Scholar 

  42. [42]

    Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095.

    Article  CAS  Google Scholar 

  43. [43]

    Huang, D. M.; Sendner, C.; Horinek, D.; Netz, R. R.; Bocquet, L. Water slippage versus contact angle: A quasiuniversal relationship. Phys. Rev. Lett. 2008, 101, 226101.

    Article  Google Scholar 

  44. [44]

    Sendner, C.; Horinek, D.; Bocquet, L.; Netz, R. R. Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion. Langmuir 2009, 25, 10768–10781.

    Article  CAS  Google Scholar 

  45. [45]

    Tandon, V.; Kirby, B. J. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure. Electrophoresis 2008, 29, 1102–1114.

    Article  CAS  Google Scholar 

  46. [46]

    Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565.

    Article  CAS  Google Scholar 

  47. [47]

    Mattia, D.; Gogotsi, Y. Review: Static and dynamic behavior of liquids inside carbon nanotubes. Microfluid. Nanofluid. 2008, 5, 289–305.

    Article  CAS  Google Scholar 

  48. [48]

    Bass, M.; Berman, A.; Singh, A.; Konovalov, O.; Freger, V. Surface structure of Nafion in vapor and liquid. J. Phys. Chem. B 2010, 114, 3784–3790.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simon Thiele.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thiele, S., Zengerle, R. & Ziegler, C. Nano-morphology of a polymer electrolyte fuel cell catalyst layer—imaging, reconstruction and analysis. Nano Res. 4, 849–860 (2011). https://doi.org/10.1007/s12274-011-0141-x

Download citation

Keywords

  • Cathode catalyst layer (CCL)
  • polymer electrolyte fuel cell (PEFC)
  • tomography
  • three-dimensional reconstruction