Geim, K. A.; Novoselov, K. S. The rise of graphene. Nat. Mater.
2007, 6, 183–191.
Article
CAS
Google Scholar
Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.
1958, 80, 1339.
Article
CAS
Google Scholar
Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater.
2008, 20, 4490–4493.
Article
CAS
Google Scholar
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon
2007, 45, 1558–1565.
Article
CAS
Google Scholar
Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano
2010, 4, 2429–2437.
Article
CAS
Google Scholar
Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun.
2010, 46, 1112–1114.
Article
CAS
Google Scholar
Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C
2009, 113, 14071–14075.
Article
CAS
Google Scholar
Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J.
2009, 15, 6116–6120.
Article
CAS
Google Scholar
Mcallister, M. J.; Li, J.; Adamson, H. D.; Schnlepp, C. H.; Abdalam, A. A.; Liu, J.; Hrrrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’gomme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.
2007, 19, 4396–4404.
Article
CAS
Google Scholar
Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater.
2010, 22, 2213–2218.
Article
CAS
Google Scholar
Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano
2009, 3, 2653–2659.
Article
CAS
Google Scholar
Salas, E. C.; Sun, Z.; Luttge, A.; Tour, J. M. Reduction of graphene oxide via bacterial respiration. ACS Nano
2010, 4, 4852–4856.
Article
CAS
Google Scholar
Myers, C. R.; Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240, 1319–1321.
Article
CAS
Google Scholar
Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L. M.; Saffarini, D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M. Towards environmental systems biology of Shewanella. Nat. Rev. Microb.
2008, 6, 592–603.
Article
CAS
Google Scholar
Pitts, K. E.; Dobbin, P. S.; Reyes-Ramirez, F.; Thomson, A. J.; Richardson, D. J.; Seward, H. E. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J. Biol. Chem.
2003, 278, 27758–27765.
Article
CAS
Google Scholar
Myers, C. R.; Myers, J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol.
1997, 179, 1143–1152.
CAS
Google Scholar
Beliaev, A. S.; Saffarini, D. A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol.
1998, 180, 6292–6297.
CAS
Google Scholar
Myers, J. M.; Myers, C. R. Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim. Biophys. Acta
1998, 1373, 237–251.
Article
CAS
Google Scholar
Myers, J. M.; Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol.
2001, 67, 260–269.
Article
CAS
Google Scholar
Beliaev, A. S.; Saffarini, D. A.; McLaughlin, J. L.; Hunnicutt, D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol.
2001, 39, 722–730.
Article
CAS
Google Scholar
Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA
2008, 105, 3968–3973.
Article
CAS
Google Scholar
Hau, H. H.; Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol.
2007, 61, 237–258.
Article
CAS
Google Scholar
Liu, C.; Gorby, Y. A.; Zachara, J. M.; Fredrickson, J. K.; Brown, C. F. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng.
2002, 80, 637–649.
Article
CAS
Google Scholar
Bretschger, O.; Obraztsova, A.; Sturm, C. A.; Chang, I. S.; Gorby, Y. A.; Reed, S. B.; Culley, D. E.; Reardon, C. L.; Barua, S.; Romine, M. F.; Zhou, J.; Beliaev, A. S.; Bouhenni, R.; Saffarini, D.; Mansfeld, F.; Kim, B.; Fredrickson, J. K.; Nealson, K. H. An exploration of current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol.
2007, 73, 7003–7012.
Article
CAS
Google Scholar
Saltikov, C. W.; Newman, D. K. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA
2003, 100, 10983–10988.
Article
CAS
Google Scholar
Tufano, K. J.; Reyes, C.; Saltikov, C. W.; Fendorf, S. Reductive processes controlling arsenic retention: Revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol.
2008, 42, 8283–8289.
Article
CAS
Google Scholar
Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett.
2008, 8, 36–41.
Article
Google Scholar
Stoller, M. D.; Park, S. J.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett.
2008, 8, 3498–3502.
Article
CAS
Google Scholar
Reiling, H. E.; Laurila, H.; Fiechter, A. Mass culture of Escherichia coli: Medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J. Biotechnol.
1985, 2, 191–206.
Article
CAS
Google Scholar
Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA
2008, 105, 3968–3973.
Article
CAS
Google Scholar
Lies, D. P.; Hernandez, M. E.; Kappler, A.; Mielke, R. E.; Gralnick, J. A.; Newman, D. K. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol.
2005, 71, 4414–4426.
Article
CAS
Google Scholar
Newman, D. K.; Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature
2000, 405, 94–97.
Article
CAS
Google Scholar
Reyes, C.; Murphy, J. N.; Saltikov, C. W. Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3. Environ. Microbiol.
2010, 12, 1878–1878.
Article
CAS
Google Scholar