Nano Research

, Volume 4, Issue 6, pp 550–562 | Cite as

Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants

  • Hongmei Sun
  • Linyuan Cao
  • Lehui LuEmail author
Research Article


A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe3O4 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples—including industrial waste water and lake water—have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.


Magnetic nanoparticles graphene nanocomposites dye pollutants removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_111_MOESM1_ESM.pdf (945 kb)
Supplementary material, approximately 944 KB.


  1. [1]
    Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Wiley-VCH: Weinheim, Germany, 2003.Google Scholar
  2. [2]
    Christie, R. M. Environmental Aspects of Textile Dyeing; Woodhead Publishing: Great Abington, Cambridge, 2007.CrossRefGoogle Scholar
  3. [3]
    Hai, F. I.; Yamamoto, K.; Fukushi, K. Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol. 2007, 37, 315–377.CrossRefGoogle Scholar
  4. [4]
    Husain, Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit. Rev. Biotechnol. 2006, 26, 201–221.CrossRefGoogle Scholar
  5. [5]
    Horng, J. Y.; Huang, S. D. Phosphates, phosphites, and phosphides in environmental samples. Environ. Sci. Technol. 1993, 27, 1169–1174.CrossRefGoogle Scholar
  6. [6]
    Kuo, W. G. Decolorizing dye wastewater with Fenton’s reagent. Water Res. 1992, 26, 881–886.CrossRefGoogle Scholar
  7. [7]
    Sujoy, K. D.; Jayati, B.; Akhil, R. D.; Arun, K. G. Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Langmuir 2006, 22, 7265–7272.CrossRefGoogle Scholar
  8. [8]
    Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698.CrossRefGoogle Scholar
  9. [9]
    Mohanty, K.; Naidu, J. T.; Meikap, B. C.; Biswas, M. N. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 2006, 45, 5165–5171.CrossRefGoogle Scholar
  10. [10]
    Chen, W.; Lu, W.; Yao, Y.; Xu, M. Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber-supported cobalt phthalocyanine. Environ. Sci. Technol. 2007, 41, 6240–6245.CrossRefGoogle Scholar
  11. [11]
    Pandit, P.; Basu, S. Removal of ionic dyes from water by solvent extraction using reverse micelles. Environ. Sci. Technol. 2004, 38, 2435–2442.CrossRefGoogle Scholar
  12. [12]
    Yunus, R. F.; Zheng, Y. M.; K. Nanayakkara, G. N.; Chen, J. P. Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA. Ind. Eng. Chem. Res. 2009, 48, 7466–7473.CrossRefGoogle Scholar
  13. [13]
    Zhao, X. M.; Zhang, B. H.; Ai, K. L.; Zhang, G.; Cao, L. Y.; Liu, X. J.; Sun, H. M.; Wang, H. S.; Lu, L. H. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. J. Mater. Chem. 2009, 19, 5547–5553.CrossRefGoogle Scholar
  14. [14]
    Blackburn, R. S. Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. 2004, 38, 4905–4909.CrossRefGoogle Scholar
  15. [15]
    Sun, Z.; Li, C.; Wu, D. Removal of methylene blue from aqueous solution by adsorption onto zeolite synthesized from coal fly ash and its thermal regeneration. J. Chem. Technol. Biotechnol. 2010, 85, 845–850.CrossRefGoogle Scholar
  16. [16]
    Asadullah, M.; Asaduzzaman, M.; Kabir, M. S.; Mostofa, M. G.; Miyazawa, T. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 2010, 174, 437–443.CrossRefGoogle Scholar
  17. [17]
    Wang, P.; Shi, Q.; Shi, Y.; Clark, K. K.; Stucky, G. D.; Keller, A. A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J. Am. Chem. Soc. 2009, 131, 182–188.CrossRefGoogle Scholar
  18. [18]
    Sun, Z.; Wang, L.; Liu, P.; Wang, S.; Sun, B.; Jiang, D.; Xiao, F. Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 2006, 18, 1968–1971.CrossRefGoogle Scholar
  19. [19]
    Bekiari, V.; Lianos, P. Ureasil gels as a highly efficient sorbent for water purification. Chem. Mater. 2006, 18, 4142–4146.CrossRefGoogle Scholar
  20. [20]
    Zhao, M.; Tang, Z.; Liu, P. Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. J. Hazard. Mater. 2008, 158, 43–51.CrossRefGoogle Scholar
  21. [21]
    Seredych, M.; Bandosz, T. J. Removal of cationic and ionic dyes on industrial-municipal sludge based composite adsorbents. Ind. Eng. Chem. Res. 2007, 46, 1786–1793.CrossRefGoogle Scholar
  22. [22]
    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.CrossRefGoogle Scholar
  23. [23]
    Cao, L. Y.; Liu, Y. L.; Zhang, B. H.; Lu, L. H. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: Facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Interfaces 2010, 2, 2339–2346.CrossRefGoogle Scholar
  24. [24]
    Ai, K. L.; Liu, Y. L.; Lu, L. H.; Cheng, X. L.; Huo, L. H. A novel strategy for making soluble graphene sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem., in press, DOI:10.1039/C0JM02865G.Google Scholar
  25. [25]
    Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K. Composites of graphene with large aromatic molecules. Adv. Mater. 2009, 21, 3191–3195.CrossRefGoogle Scholar
  26. [26]
    Loh, K.; Bao, Q.; Ang, P. K.; Yang, J. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.CrossRefGoogle Scholar
  27. [27]
    Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.CrossRefGoogle Scholar
  28. [28]
    Wu, Z.; Wang, D.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.CrossRefGoogle Scholar
  29. [29]
    Hu, J.; Zhong, L.; Song, W.; Wan, L. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 2008, 20, 2977–2982.CrossRefGoogle Scholar
  30. [30]
    Rocher, V.; Bee, A.; Siaugue, J. M.; Cabuil, V. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J. Hazard. Mater. 2010, 178, 434–439.CrossRefGoogle Scholar
  31. [31]
    Zhai, Y. M.; Zhai, J. F.; Zhou, M.; Dong, S. J. Ordered magnetic core-manganese oxide shell nanostructures and their application in water treatment. J. Mater. Chem. 2009, 19, 7030–7035.CrossRefGoogle Scholar
  32. [32]
    Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H. Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small 2009, 6, 169–173.CrossRefGoogle Scholar
  33. [33]
    Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979–3986.CrossRefGoogle Scholar
  34. [34]
    Zhang, M.; Lei, D.; Yin, X.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Magnetite/graphene composites: Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater. Chem. 2010, 20, 5538–5543.CrossRefGoogle Scholar
  35. [35]
    Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M. One step synthesis of graphene oxide-magnetic nanoparticle composite. J. Phys. Chem. C 2010, 114, 1498–1503.CrossRefGoogle Scholar
  36. [36]
    Liang, J.; Xu, Y.; Sui, D.; Zhang, L.; Huang, Y.; Ma, Y.; Li, F.; Chen, Y. Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C 2010, 114, 17465–17471.CrossRefGoogle Scholar
  37. [37]
    Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.CrossRefGoogle Scholar
  38. [38]
    Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha, K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R. B. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 2010, 4, 3845–3852.CrossRefGoogle Scholar
  39. [39]
    Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem., Int. Ed. 2005, 44, 2782–2785.CrossRefGoogle Scholar
  40. [40]
    Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wang, Y. S.; Chen, Y. S. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714.CrossRefGoogle Scholar
  41. [41]
    Xuan, S.; Wang, Y. J.; Yu, J. C.; Leung, K. C. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 2009, 21, 5079–5087.CrossRefGoogle Scholar
  42. [42]
    Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.CrossRefGoogle Scholar
  43. [43]
    Lu, L. H.; Randjelovic, I.; Capek, R.; Gaponik, N.; Yang, J. H.; Zhang, H. J.; Eychmuller, A. Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy. Chem. Mater. 2005, 17, 5731–5736.CrossRefGoogle Scholar
  44. [44]
    Lu, L. H.; Ai, K. L.; Ozaki, Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Langmuir 2008, 24, 1058–1063.CrossRefGoogle Scholar
  45. [45]
    Warren, B. E. X-ray Diffraction; Addison-Wesley: London, 1969.Google Scholar
  46. [46]
    Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.CrossRefGoogle Scholar
  47. [47]
    Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W. P.; Yin, Y. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem., Int. Ed. 2007, 46, 4342–4345.CrossRefGoogle Scholar
  48. [48]
    McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  49. [49]
    Yang, H. F.; Li, F. H.; Shan, C. S.; Han, D. X.; Zhang, Q. X.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009, 19, 4632–4638.CrossRefGoogle Scholar
  50. [50]
    Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.CrossRefGoogle Scholar
  51. [51]
    Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Chen, Z. G.; Gu, H. C.; Lu, G. Q. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control. Adv. Mater. 2008, 20, 805–809.CrossRefGoogle Scholar
  52. [52]
    Liu, Y. L.; Ai, K. L.; Cheng, X. L.; Huo, L. H.; Lu, L. H. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 2010, 20, 951–956.CrossRefGoogle Scholar
  53. [53]
    Hameed, B. H.; El-Khaiary, M. I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J. Hazard. Mater. 2008, 154, 237–244.CrossRefGoogle Scholar
  54. [54]
    Ngah, W. S. W.; Ariff, N. F. M.; Hashim, A.; Hanaf, M. A. K. M. Malachite green adsorption onto chitosan coated bentonite beads: Isotherms, kinetics and mechanism. Clean—Soil, Air, Water 2010, 38, 394–400.CrossRefGoogle Scholar
  55. [55]
    Vijayakumar, G.; Yoo, C. K.; Elango, K. G. P.; Dharmendirakumar, M. Adsorption characteristics of rhodamine B from aqueous solution onto baryte. Clean—Soil, Air, Water 2010, 38, 202–209.CrossRefGoogle Scholar
  56. [56]
    Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.CrossRefGoogle Scholar
  57. [57]
    Freundlich, H. M. F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57A, 385–470.Google Scholar
  58. [58]
    Ai, K. L.; Liu, Y. L.; Lu, L. H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497.CrossRefGoogle Scholar
  59. [59]
    Zhang, B. H.; Wang, H. S.; Lu, L. H.; Ai, K. L.; Zhang, G.; Cheng, X. L. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2008, 18, 2348–2355.CrossRefGoogle Scholar
  60. [60]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations