Nano Research

, Volume 4, Issue 4, pp 414–424 | Cite as

Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts?

  • Christian Reitz
  • Christian Suchomski
  • Christoph Weidmann
  • Torsten Brezesinski
Research Article


Herein is reported the soft-templating synthesis of visible-light photoactive bismuth ferrite (BiFeO3) nanoarchitectures in the form of thin films using a poly(ethylene-co-butylene)-block-poly(ethylene oxide) diblock copolymer as the structure-directing agent. We establish that (1) the self-assembled materials employed in this work are highly crystalline after annealing at 550 °C in air and that (2) neither the bismuth-poor Bi2Fe4O9 phase nor other impurity phases are formed. We further show that there is a distinct restructuring of the high quality cubic pore network of amorphous BiFeO3 during crystallization. This restructuring leads to films with a unique architecture that is composed of anisotropic crystallites intermingled with a continuous mesoporosity. While this article focuses on the characterization of these novel materials by electron microscopy, krypton physisorption, grazing incidence small-angle X-ray scattering, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, UV-vis and Raman spectroscopy, we also examine the photocatalytic properties and show the benefits of the combination of mesoporosity and nanocrystallinity. Templated BiFeO3 thin films (25% porosity) with a direct optical band gap at 2.9 eV exhibit a catalytic activity for the degradation of rhodamine B much better than that of nontemplated samples. We attribute this improvement to the nanoscale porosity, which provides for more available active sites on the photocatalyst.


Self-assembly mesoporous nanocrystalline thin films photocatalysis multiferroic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_96_MOESM1_ESM.pdf (926 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Ramesh, R.; Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29.CrossRefGoogle Scholar
  2. [2]
    Stolichnov, I.; Riester, S. W. E.; Trodahl, H. J.; Setter, N.; Rushforth, A. W.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.; Jungwirth, T. Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat. Mater. 2008, 7, 464–467.CrossRefGoogle Scholar
  3. [3]
    Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709.CrossRefGoogle Scholar
  4. [4]
    Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765.CrossRefGoogle Scholar
  5. [5]
    Cheong, S. W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 2007, 6, 13–20.CrossRefGoogle Scholar
  6. [6]
    Catalan, G.; Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485.CrossRefGoogle Scholar
  7. [7]
    Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; Gajek, M.; Han, S. J.; He, Q.; Balke, N.; Yang, C. H.; Lee, D.; Hu, W. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 2008, 7, 478–482.CrossRefGoogle Scholar
  8. [8]
    Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.CrossRefGoogle Scholar
  9. [9]
    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 2005, 38, R123–R152.CrossRefGoogle Scholar
  10. [10]
    Ederer, C.; Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 2005, 71, 060401.CrossRefGoogle Scholar
  11. [11]
    Gao, F.; Chen, X. Y.; Yin, K. B.; Dong, S.; Ren, Z. F.; Yuan, F.; Yu, T.; Zou, Z.; Liu, J. M. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 2007, 19, 2889–2892.CrossRefGoogle Scholar
  12. [12]
    Yang, H.; Luo, H. M.; Wang, H.; Usov, I. O.; Suvorova, N. A.; Jain, M.; Feldmann, D. M.; Dowden, P. C.; DePaula, R. F.; Jia, Q. X. Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett. 2008, 92, 102113.CrossRefGoogle Scholar
  13. [13]
    Mills, A.; Davies, R. H.; Worsley, D. Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 1993, 22, 417–425.CrossRefGoogle Scholar
  14. [14]
    Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  15. [15]
    Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C 2005, 6, 186–205.CrossRefGoogle Scholar
  16. [16]
    Selbach, S. M.; Einarsrud, M. A.; Grande, T. On the thermodynamic stability of BiFeO3. Chem. Mater. 2009, 21, 169–173.CrossRefGoogle Scholar
  17. [17]
    Mann, S.; Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 1996, 382, 313–318.CrossRefGoogle Scholar
  18. [18]
    Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11, 2813–2826.CrossRefGoogle Scholar
  19. [19]
    Goltner, C. G.; Antonietti, M. Mesoporous materials by templating of liquid crystalline phases. Adv. Mater. 1997, 9, 431–436.CrossRefGoogle Scholar
  20. [20]
    Soler-Illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093–4138.CrossRefGoogle Scholar
  21. [21]
    Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579–585.CrossRefGoogle Scholar
  22. [22]
    Brezesinski, T.; Wang, J.; Senter, R.; Brezesinski, K.; Dunn, B.; Tolbert, S. H. On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO2 thin films. ACS Nano 2010, 4, 967–977.CrossRefGoogle Scholar
  23. [23]
    Sel, O.; Sallard, S.; Brezesinski, T.; Rathousky, J.; Dunphy, D. R.; Collord, A.; Smarsly, B. M. Periodically ordered meso- and macroporous SiO2 thin films and their induced electrochemical activity as a function of pore hierarchy. Adv. Funct. Mater. 2007, 17, 3241–3250.CrossRefGoogle Scholar
  24. [24]
    Brezesinski, K.; Ostermann, R.; Hartmann, P.; Perlich, J.; Brezesinski, T. Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chem. Mater. 2010, 22, 3079–3085.CrossRefGoogle Scholar
  25. [25]
    Richmann, E. K.; Kang, C. B.; Brezesinski, T.; Tolbert, S. H. Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films. Nano Lett. 2008, 8, 3075–3079.CrossRefGoogle Scholar
  26. [26]
    Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S. O.; Tolbert, S. H.; Smarsly, B. M.; Dunn, B.; Brezesinski, T. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 2010, 132, 6982–6990.CrossRefGoogle Scholar
  27. [27]
    Cseri, T.; Bekassy, S.; Kenessey, G.; Liptay, G.; Figueras, F. Characterization of metal nitrates and clay supported metal nitrates by thermal analysis. Thermochim. Acta 1996, 288, 137–154.CrossRefGoogle Scholar
  28. [28]
    Kodama, H. Synthesis of a new compound, Bi5O7NO3, by thermal decomposition. J. Solid State Chem. 1994, 112, 27–30.CrossRefGoogle Scholar
  29. [29]
    Singh, M. K.; Jang, H. M.; Ryu, S.; Jo, M. H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006, 88, 042907.CrossRefGoogle Scholar
  30. [30]
    Kothari, D.; Reddy, V. R.; Sathe, V. G.; Gupta, A.; Banerjee, A.; Awasthi, A. M. Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 2008, 320, 548–552.CrossRefGoogle Scholar
  31. [31]
    Yang, Y.; Sun, J. Y.; Zhu, K.; Liu, Y. L.; Chen, J.; Xing, X. R. Raman study of BiFeO3 with different excitation wavelengths. Physica B 2009, 404, 171–174.CrossRefGoogle Scholar
  32. [32]
    Brezesinski, T.; Groenewolt, M.; Pinna, N.; Amenitsch, H.; Antonietti, M.; Smarsly, B. M. Surfactant-mediated generation of iso-oriented dense and mesoporous crystalline metal-oxide layers. Adv. Mater. 2006, 18, 1827–1831.CrossRefGoogle Scholar
  33. [33]
    Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of Photoelectron Spectroscopy; Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie: Minnesota, USA, 1992.Google Scholar
  34. [34]
    Jaiswal, A.; Das, R.; Vivekanand, K.; Abraham, P. M.; Adyanthaya, S.; Poddar, P. Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 2010, 114, 2108–2115.CrossRefGoogle Scholar
  35. [35]
    Gujar, T. P.; Shinde, V. R.; Lokhande, C. D. Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method. Mater. Chem. Phys. 2007, 103, 142–146.CrossRefGoogle Scholar
  36. [36]
    Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.; Schlom, D. G. Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 2008, 92, 142908.CrossRefGoogle Scholar
  37. [37]
    Clark, S. J.; Robertson, J. Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90, 132903.CrossRefGoogle Scholar
  38. [38]
    Rolison, D. R. Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity. Science 2003, 299, 1698–1701.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Reitz
    • 1
  • Christian Suchomski
    • 1
  • Christoph Weidmann
    • 1
  • Torsten Brezesinski
    • 1
  1. 1.Institute of Physical ChemistryJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations