Nano Research

, Volume 4, Issue 4, pp 405–413 | Cite as

In Vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster

  • Pier Paolo Pompa
  • Giuseppe Vecchio
  • Antonio Galeone
  • Virgilio Brunetti
  • Stefania Sabella
  • Gabriele Maiorano
  • Andrea Falqui
  • Giovanni Bertoni
  • Roberto Cingolani
Research Article

Abstract

The growing use of nanomaterials in commercial goods and novel technologies is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of their potential toxicity. In this context, we investigated the effects of citrate-capped gold nanoparticles (AuNPs) on the model system Drosophila melanogaster upon ingestion. We observed a significant in vivo toxicity of AuNPs, which elicited clear adverse effects in treated organisms, such as a strong reduction of their life span and fertility, presence of DNA fragmentation, as well as a significant overexpression of the stress proteins. Transmission electron microscopy demonstrated the localization of the nanoparticles in tissues of Drosophila. The experimental evidence of high in vivo toxicity of a nanoscale material, which is widely considered to be safe and biocompatible in its bulk form, opens up important questions in many fields, including nanomedicine, material science, health, drug delivery and risk assessment.

Keywords

Nanoparticles nanotoxicology gold in vivo studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_95_MOESM1_ESM.pdf (1003 kb)
Supplementary material, approximately 590 KB.

References

  1. [1]
    Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.CrossRefGoogle Scholar
  2. [2]
    Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.CrossRefGoogle Scholar
  3. [3]
    Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.CrossRefGoogle Scholar
  4. [4]
    Dobrovolskaia, M. A.; Germolec, D. R.; Weaver, J. L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 2009, 4, 411–414.CrossRefGoogle Scholar
  5. [5]
    Maynard, A. D.; Aitken, R. J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdorster, G.; Philbert, M. A.; Ryan, J.; Seaton, A.; Stone, V.; Tinkle, S. S.; Tran,.; Walker, N. J.; Warheit, D. B. Safe handling of nanotechnology. Nature 2006, 444, 267–269.CrossRefGoogle Scholar
  6. [6]
    Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428.CrossRefGoogle Scholar
  7. [7]
    Mortensen, L. J.; Oberdorster, G.; Pentland, A. P.; Delouise, L. A. In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett. 2008, 8, 2779–2787.CrossRefGoogle Scholar
  8. [8]
    AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290.CrossRefGoogle Scholar
  9. [9]
    Napierska, D.; Thomassen, L. C.; Rabolli, V.; Lison, D.; Gonzalez, L.; Kirsch-Volders, M.; Martens, J. A.; Hoet, P. H. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009, 5, 846–853.CrossRefGoogle Scholar
  10. [10]
    Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641.CrossRefGoogle Scholar
  11. [11]
    Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small 2009, 5, 701–708.CrossRefGoogle Scholar
  12. [12]
    Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654.CrossRefGoogle Scholar
  13. [13]
    Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.CrossRefGoogle Scholar
  14. [14]
    Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.CrossRefGoogle Scholar
  15. [15]
    Pernodet, N.; Fang, X.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766–773.CrossRefGoogle Scholar
  16. [16]
    Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Sizedependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.CrossRefGoogle Scholar
  17. [17]
    Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4, 153–159.CrossRefGoogle Scholar
  18. [18]
    Khan, J. A.; Pillai, B.; Das, T. K.; Singh, Y.; Maiti, S. Molecular effects of uptake of gold nanoparticles in HeLa cells. ChemBioChem 2007, 8, 1237–1240.CrossRefGoogle Scholar
  19. [19]
    Li, J. J.; Zou, L.; Hartono, D.; Ong, C. N.; Bay, B. H.; Yung, L. Y. L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008, 20, 138–142.CrossRefGoogle Scholar
  20. [20]
    Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.CrossRefGoogle Scholar
  21. [21]
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.Google Scholar
  22. [22]
    Ja, W. W.; Carvalho, G. B.; Mak, E. M.; de la Rosa, N. N.; Fang, A. Y.; Liong, J. C.; Brummel, T.; Benzer, S. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 2007, 104, 8253–8256.CrossRefGoogle Scholar
  23. [23]
    Gayathri, M. V.; Krishnamurthy, N. B. Studies on the toxicity of the mercurial fungicide Agallol 3 in Drosophila melanogaster. Environ. Res. 1981, 24, 89–95.CrossRefGoogle Scholar
  24. [24]
    Auluck, P. K.; Chan, H. Y. E.; Trojanowski, J. Q.; Lee, V. M. Y.; Bonini, N. M. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002, 295, 865–868.CrossRefGoogle Scholar
  25. [25]
    Kazantsev, A.; Walker, H. A.; Slepko, N.; Bear, J. E.; Preisinger, E.; Steffan, J. S.; Zhu, Y. Z.; Gertler, F. B.; Housman, D. E.; Marsh, J. L.; Thompson, L. M. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. 2002, 30, 367–376.CrossRefGoogle Scholar
  26. [26]
    Benford, D. J.; Hanley, A. B.; Bottrill, K.; Oehlschlager, S.; Balls, M.; Branca, F.; Castegnaro, J. J.; Descotes, J.; Hemminiki, K.; Lindsay, D.; Schiliter, B. Biomarkers as predictive tools in toxicity testing—The report and recommendations of ECVAM Workshop 40. ATLA-Alternatives to Laboratory Animals 2000, 28, 119–131.Google Scholar
  27. [27]
    Ahamed, M.; Posgai, R.; Gorey, T. J.; Nielsen, M.; Hussain, S. M.; Rowe, J. J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol., 242, 263–269.Google Scholar
  28. [28]
    Lin, Y. J.; Seroude, L.; Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 1998, 282, 943–946.CrossRefGoogle Scholar
  29. [29]
    Zid, B. M.; Rogers, A. N.; Katewa, S. D.; Vargas, M. A.; Kolipinski, M. C.; Lu, T. A.; Benzer, S.; Kapahi, P. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 2009, 139, 149–160.CrossRefGoogle Scholar
  30. [30]
    Feder, J. H.; Rossi, J. M.; Solomon, J.; Solomon, N.; Lindquist, S. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev. 1992, 6, 1402–1413.CrossRefGoogle Scholar
  31. [31]
    Singh, M. P.; Reddy, M. M. K.; Mathur, N.; Saxena, D. K.; Chowdhuri, D. K. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: Role of ROS generation. Toxicol. Appl. Pharmacol. 2009, 235, 226–243.CrossRefGoogle Scholar
  32. [32]
    Morimoto, R. I. Cells in stress: Transcriptional activation of heat shock genes. Science 1993, 259, 1409–1410.CrossRefGoogle Scholar
  33. [33]
    Pockley, A. G. Heat shock proteins as regulators of the immune response. Lancet 2003, 362, 469–476.CrossRefGoogle Scholar
  34. [34]
    Tatar, M.; Khazaeli, A. A.; Curtsinger, J. W. Chaperoning extended life. Nature 1997, 390, 30.CrossRefGoogle Scholar
  35. [35]
    Silbermann, R.; Tatar, M. Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution 2000, 54, 2038–2045.Google Scholar
  36. [36]
    Partridge, L.; Gems, D. Mechanisms of ageing: Public or private? Nat. Rev. Genet. 2002, 3, 165–175.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pier Paolo Pompa
    • 1
  • Giuseppe Vecchio
    • 1
  • Antonio Galeone
    • 1
  • Virgilio Brunetti
    • 1
  • Stefania Sabella
    • 1
  • Gabriele Maiorano
    • 1
  • Andrea Falqui
    • 2
  • Giovanni Bertoni
    • 2
  • Roberto Cingolani
    • 1
    • 2
  1. 1.Italian Institute of TechnologyCenter for Bio-Molecular NanotechnologyArnesano (Lecce)Italy
  2. 2.Italian Institute of TechnologyCentral Research LaboratoriesGenovaItaly

Personalised recommendations