Nano Research

, Volume 4, Issue 4, pp 393–404 | Cite as

Effects of gamma irradiation for sterilization on aqueous dispersions of length sorted carbon nanotubes

  • Jeffrey A. Fagan
  • Nancy J. Lin
  • Rolf Zeisler
  • Angela R. Hight Walker
Research Article

Abstract

There is currently great interest in the potential use of carbon nanotubes as delivery vessels for nanotherapeutics and other medical applications. However, no data are available on the effects of sterilization methods on the properties of nanotube dispersions, the form in which most medical applications will be processed. Here we show the effects of gamma irradiation from a 60Co source on the dispersion and optical properties of single-wall carbon nanotubes in aqueous dispersion. Samples of different length-refined populations were sealed in ampoules and exposed to a dose of approximately 28 kGy, a level sufficient to ensure sterility of the dispersions. In contrast to literature results for solid-phase nanotube samples, the effects of gamma irradiation on the dispersion and optical properties of the nanotube samples were found to be minimal. Based on these results, gamma irradiation appears sufficiently non-destructive to be industrially useful for the sterilization of nanotube dispersions.

Keywords

Nanotube single-wall nanotube (SWNT) single-wall carbon nanotube (SWCNT) gamma irradiation sterilization dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2011_94_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefGoogle Scholar
  2. [2]
    Kymakis, E.; Amaratunga, G. A. J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 2002, 80, 112–114.CrossRefGoogle Scholar
  3. [3]
    Kam, N. W. S.; O’Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605.CrossRefGoogle Scholar
  4. [4]
    Lacerda, L.; Bianco, A.; Prato, M.; Kostarelos, K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006, 58, 1460–1470.CrossRefGoogle Scholar
  5. [5]
    Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R. D.; Cavicchi, R. E.; Avedisian, C. T.; Mitra, S.; Savla, R.; Wagner, P. D.; Srivastava, S.; He, H. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 2009, 9, 351.CrossRefGoogle Scholar
  6. [6]
    Besteman, K.; Lee, J. O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Enzyme-coated carbon nanotubes as singlemolecule biosensors. Nano Lett. 2003, 3, 727–730.CrossRefGoogle Scholar
  7. [7]
    Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Nearinfrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86–92.CrossRefGoogle Scholar
  8. [8]
    Ananta, J. S.; Matson, M. L.; Tang, A. M.; Mandal, T.; Lin, S.; Wong, K.; Wong, S. T.; Wilson, L. J. Single-walled carbon nanotube materials as T2-weighted MRI contrast agents. J. Phys. Chem. C 2009, 113, 19369–19372.CrossRefGoogle Scholar
  9. [9]
    Hong, S. Y.; Tobias, G.; Al-Jamal, K. T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P. D.; Sim, R. B.; Finucane, C.; Mather, S. J.; Green, M. L. H.; Kostarelos, K.; Gavis, G. B. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 2010, 9, 485–490.CrossRefGoogle Scholar
  10. [10]
    Belluci, S.; Chiaretti, M.; Onorato, P.; Rossella, F.; Grandi, M. S.; Galinetto, P.; Sacco, I.; Micciulla, F. Micro-Raman study of the role of sterilization on carbon nanotubes for biomedical applications. Nanomedicine 2010, 5, 209–215.CrossRefGoogle Scholar
  11. [11]
    Skakalova, V.; Hulman, M.; Fedorko, P.; Lukáĉ, P.; Roth, S. Effect of gamma-irradiation on single-wall carbon nanotube paper. AIP Conf. Proc. 2003, 685, 143–147.CrossRefGoogle Scholar
  12. [12]
    Skakalova, V.; Dettlaff-Weglikowska, U.; Roth, S. Gammairradiated and functionalized single wall nanotubes. Diamond Relat. Mater. 2004, 13, 296–298.CrossRefGoogle Scholar
  13. [13]
    Aitkaliyeva, A.; McCarthy, M. C.; Martin, M.; Fu, E. G.; Wijesundera, D.; Wang, X.; Chu, W.; Jeong, H.; Shao, L. Defect formation and annealing kinetics in ion irradiated carbon nanotube buckypapers. Nucl. Instrum. Meth. Phys. Res. B 2009, 267, 3443–3446.CrossRefGoogle Scholar
  14. [14]
    Cress, C. D.; Schauerman, C. M.; Landi, B. J.; Messenger, S. R.; Raffaelle, R. P.; Walters, R. J. Radiation effects in single-walled carbon nanotube papers. J. Appl. Phys. 2010, 107, 014316.CrossRefGoogle Scholar
  15. [15]
    Tang, X. W.; Yang, Y.; Kim, W.; Wang, Q.; Qi, P.; Dai, H.; Xing, L. Measurement of ionizing radiation using carbon nanotube field effect transistor. Phys. Med. Biol. 2005, 50, N23.CrossRefGoogle Scholar
  16. [16]
    Vitusevich, S. A.; Sydoruk, V. A.; Petrychuk, M. V.; Danilchenko, B. A.; Klein, N.; Offenhäusser, A.; Ural, A.; Bosman, G. Transport properties of single-walled carbon nanotube transistors after gamma radiation treatment. J. Appl. Phys. 2010, 107, 063701.CrossRefGoogle Scholar
  17. [17]
    Memisoglu-Bilensoy, E.; Hincal, A. A. Sterile, injectable cyclodextrin nanoparticles: Effects of gamma irradiation and autoclaving. Intl. J. Pharm. 2006, 311, 203–208.CrossRefGoogle Scholar
  18. [18]
    Maksimenko, O. O.; Pavlov, E. P.; Tushov, É. G.; Molin, A. A.; Stukalov, Y. U.; Prudskova, T. N.; Sveshnikov, P. G.; Kreuter, J.; Gel’perina, S. É. Radiation sterilization of medicinal formulations of doxorubicin bound to poly(butylcyanoacrylate) nanoparticles. Pharm. Chem. J. 2008, 42, 363–367.CrossRefGoogle Scholar
  19. [19]
    Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509–3515.CrossRefGoogle Scholar
  20. [20]
    Krasheninnikov, A. V.; Banhart, F.; Li, J. X.; Foster, A. S.; Nieminen, R. M. Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality. Phys. Rev. B 2005, 72, 125428.CrossRefGoogle Scholar
  21. [21]
    Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Sansibudzem, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence dependent DNA assembly. Science 2003, 302, 1545–1548.CrossRefGoogle Scholar
  22. [22]
    Fagan, J. A.; Simpson, J. R.; Bauer, B. J.; Lacerda, S. H. D.; Becker, M. L.; Chun, J.; Migler, K. B.; Hight Walker, A. R.; Hobbie, E. K. Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 10607–10612.CrossRefGoogle Scholar
  23. [23]
    Liu, J.; Hersam, M. C. Recent developments in carbon nanotube sorting and selective growth. MRS Bull. 2010, 35, 315–321.CrossRefGoogle Scholar
  24. [24]
    Green, A. A.; Duch, M. C.; Hersam, M. C. Isolation of singlewalled carbon nanotube enantiomers by density differentiation. Nano Res. 2009, 2, 69–77.CrossRefGoogle Scholar
  25. [25]
    Franç, A.; Pelaz, B.; Moros, M.; Sánchez-Espinel, C.; Hernández, A.; Fernández-López, C.; Grazú, V.; de la Fuente, J. M.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; González-Fernández, A. Sterilization matters: Consequences of different sterilization techniques on gold nanoparticles. Small 2010, 6, 89–95.CrossRefGoogle Scholar
  26. [26]
    Bozdag, S.; Dillen, K.; Vandervoort, J.; Ludwig, A. The effect of freeze-drying with different cryoprotectants and Gamma-irradiation sterilization on the characteristics of ciprofloxacin HCI-Ioaded poly(D,L-Iactide-glycolide) nanoparticles. J. Pharm. Pharmacol. 2005, 57, 699–707.CrossRefGoogle Scholar
  27. [27]
    Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009, 26, 1025–1058.CrossRefGoogle Scholar
  28. [28]
    Schmelling, D. C.; Poster, D. L.; Chaychian, M.; Neta, P.; Silverman, J.; Al-Sheikhly, M. Degradation of polychlorinated biphenyls induced by ionizing radiation in aqueous micellar solutions. Environ. Sci. Technol. 1998, 32, 270–275.CrossRefGoogle Scholar
  29. [29]
    Becker, M. L.; Fagan, J. A.; Gallant, N. D.; Bauer, B. J.; Bajpai, V.; Hobbie, E. K.; Lacerda, S. H.; Migler, K. B.; Jakupciak, J. P. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 2007, 19, 939–945.CrossRefGoogle Scholar
  30. [30]
    Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. D.; Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004, 4, 1881–1887.CrossRefGoogle Scholar
  31. [31]
    Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.CrossRefGoogle Scholar
  32. [32]
    Zeisler, R.; Paul, R. L.; Oflaz Spatz, R.; Yu, L. L.; Mann, J. L.; Kelly, W. R.; Lang, B. E.; Leigh, S. D.; Fagan, J. Elemental analysis of a single-wall carbon nanotube candidate reference material. Anal. Bioanal. Chem., 2010, DOI: 10.1007/s00216-010-4275-6.Google Scholar
  33. [33]
    Wenseleers, W.; Vlasov, I. I.; Goovaerts, E.; Obraztsova, E.; Lobach, A. S.; Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 2004, 14, 1105–1112.CrossRefGoogle Scholar
  34. [34]
    Haggenmueller, R.; Rahatekar, S. S.; Fagan, J. A.; Chun, J.; Becker, M. L.; Naik, R. R.; Krauss, T.; Carlson, L.; Kadla, J. F.; Trulove, P. C.; Fox, D. F.; DeLong, H. C.; Fan, Z.; Kelley, S. O.; Gilman, J. W. Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 2008, 24, 5070–5078.CrossRefGoogle Scholar
  35. [35]
    Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.CrossRefGoogle Scholar
  36. [36]
    Simpson, J. R.; Fagan, J. A.; Becker, M. L.; Hobbie, E. K.; Hight Walker, A. R. The effect of dispersant on defects in length-separated single-wall carbon nanotubes measured by Raman spectroscopy. Carbon 2009, 47, 3238–3241.CrossRefGoogle Scholar
  37. [37]
    Tsyboulski, D. A.; Bakota, E. L.; Witus, L. S.; Rocha, J. D. R.; Hartgerink, J. D.; Weisman, R. B. Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 17134–17140.CrossRefGoogle Scholar
  38. [38]
    McDonald, T. J.; Engtrakul, C.; Jones, M.; Rumbles, G.; Heben, M. J. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. J. Phys. Chem. B 2006, 110, 25339–25346.CrossRefGoogle Scholar
  39. [39]
    Zhao, J.; Park, H.; Han, J.; Lu, J. P. Electronic properties of carbon nanotubes with covalent sidewall functionalization. J. Phys. Chem. B 2004, 108, 4227–4230.CrossRefGoogle Scholar
  40. [40]
    Lee, J.; Song, W.; Jang, S. S.; Fortner, J. D.; Alvarez, P. J. J.; Cooper, W. J.; Kim, J. Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Environ. Sci. Technol. 2010, 44, 3786–3792.CrossRefGoogle Scholar
  41. [41]
    Boess, C.; Bögl, K. W. Influence of radiation treatment on pharmaceuticals—a review; akaloids, morphine derivatives, and antibiotics. Drug Dev. Pharm. 1996, 22, 495–529.CrossRefGoogle Scholar
  42. [42]
    Siitonen, A. J.; Tsyboulski, D. A.; Bachilo, S. M.; Weisman, R. B. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions. Nano Lett. 2010, 10, 1595–1599.CrossRefGoogle Scholar
  43. [43]
    Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer-Verlag: Heidelberg, 2001.CrossRefGoogle Scholar
  44. [44]
    Suzuki, S.; Kobayashi, Y. Diameter dependence of low-energy electron and photon irradiation damage in single-walled carbon nanotubes. Chem. Phys. Lett. 2006, 430, 370–374.CrossRefGoogle Scholar
  45. [45]
    Spinks, J. W. T.; Woods, R. J. An introduction to Radiation Chemistry; Ch. 7; Wiley Interscience: New York, NY, 1990.Google Scholar
  46. [47]
    Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1613.CrossRefGoogle Scholar
  47. [48]
    Fagan, J. A.; Becker, M. L.; Chun, J.; Nie, P.; Bauer, B. J.; Simpson, J. R.; Walker, A. R. H.; Hobbie, E. K. Centrifugal length separation of carbon nanotubes. Langmuir 2008, 24, 13880–13889.CrossRefGoogle Scholar
  48. [49]
    Zeisler, R.; Lindstrom, R. M.; Greenberg, R. R. Instrumental neutron activation analysis: A valuable link in chemical metrology. J. Radioanal. Nucl. Chem. 2005, 263, 315–319.Google Scholar
  49. [50]
    Sambrook, J.; Russel, D. W. Molecular Cloning: A Laboratory Manual. 3rd edition; Cold Spring Harbor Laboratory Press: Woodbury NY, 2001.Google Scholar
  50. [51]
    Fantini, C.; Jorio, A.; Santos, A. P.; Peressinotto, V. S. T.; Pimenta, M. A. Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies. Chem. Phys. Lett. 2007, 439, 138–142.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jeffrey A. Fagan
    • 1
  • Nancy J. Lin
    • 1
  • Rolf Zeisler
    • 2
  • Angela R. Hight Walker
    • 3
  1. 1.Polymers DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Analytical Chemistry DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Optical Technology DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations