Skip to main content

Massless and massive particle-in-a-box states in single- and bi-layer graphene


Electron transport through short, phase-coherent metal-graphene-metal devices occurs via resonant transmission through particle-in-a-box-like states defined by the atomically-sharp metal leads. We study the spectrum of particle-in-a-box states for single- and bi-layer graphene, corresponding to massless and massive two-dimensional (2-D) fermions. The density of states D as a function of particle number n shows the expected relationships D(n) ∼ n 1/2 for massless 2-D fermions (electrons in single-layer graphene) and D(n) ∼ constant for massive 2-D fermions (electrons in bi-layer graphene). The single parameters of the massless and massive dispersion relations are found, namely Fermi velocity υ F = 1.1 × 106 m/s and effective mass m* = 0.032 m e, where m e is the electron mass, in excellent agreement with theoretical expectations.

This is a preview of subscription content, access via your institution.


  1. [1]

    Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U. C.; Bao, W.; Lau, C. N. Phase-coherent transport in graphene quantum billiards. Science 2007, 317, 1530–1533.

    Article  CAS  Google Scholar 

  2. [2]

    Lundeberg, M. B.; Folk, J. A. Spin-resolved quantum interference in graphene. Nat. Phys. 2009, 5, 894–897.

    Article  CAS  Google Scholar 

  3. [3]

    Young, A. F.; Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 2009, 5, 222–226.

    Article  CAS  Google Scholar 

  4. [4]

    Novoselov, K. S.; Geim, A. K.; S.; Morozov, V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  Google Scholar 

  5. [5]

    Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  CAS  Google Scholar 

  6. [6]

    Koshino, M.; Ando, T. Transport in bilayer graphene: Calculations within a self-consistent Born approximation. Phys. Rev. B 2006, 73, 245403.

    Article  Google Scholar 

  7. [7]

    Novoselov, K. S.; McCann, E.; Morozov, S. V.; Fal’ko, V. I.; Katsnelson, M. I.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. K. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2006, 2, 177–180.

    Article  Google Scholar 

  8. [8]

    McCann, E.; Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 2006, 96, 086805.

    Article  Google Scholar 

  9. [9]

    Nilson, J.; Castro Neto, A. H.; Guinea, F.; Peres, N. M. R. Electronic properties of graphene multilayers. Phys. Rev. Lett. 2006, 97, 266801.

    Article  Google Scholar 

  10. [10]

    Partoens, B.; Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 2006, 74, 075404.

    Article  Google Scholar 

  11. [11]

    Das Sarma, S.; Hwang, E. H.; Tse, W. K. Many-body interaction effects in doped and undoped graphene: Fermi liquid versus non-Fermi liquid. Phys. Rev. B 2007, 75, 121406.

    Google Scholar 

  12. [12]

    Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.

    Article  CAS  Google Scholar 

  13. [13]

    Henriksen, E. A.; Jiang, Z.; Tung, L. C.; Schwartz, M. E.; Takita, M.; Wang, Y. J.; Kim, P.; Stormer, H. L. Cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 2008, 100, 087403.

    Google Scholar 

  14. [14]

    Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.

    Article  CAS  Google Scholar 

  15. [15]

    Toy, W. W.; Dresselhaus, M. S.; Dresselhaus, G. Minority carriers in graphite and the H-point magnetoreflection spectra. Phys. Rev. B 1977, 15, 4077–4090.

    Article  CAS  Google Scholar 

  16. [16]

    Dresselhaus, M. S.; Dresselhaus, G. Intercalation compound of graphite. Adv. Phys. 1981, 30, 139–326.

    Article  CAS  Google Scholar 

  17. [17]

    Liang, W.; Bockrath, M.; Bozovic, D.; Hafner, J. H.; Tinkham, M.; Park, H. Fabry-Perot interference in a nanotube electron waveguide. Nature 2001, 411, 665–669.

    Article  CAS  Google Scholar 

  18. [18]

    Cao, J.; Wang, Q.; Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.

    Article  CAS  Google Scholar 

  19. [19]

    Henriksen, E. A.; Eisenstein, J. P. Measurement of the electronic compressibility of bilayer graphene. Phys. Rev. B 2010, 82, 041412.

    Article  Google Scholar 

  20. [20]

    Young, A. F.; Dean, C. R.; Meric, I.; Sorgenfrei, S.; Ren, H.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P. Electronic compressibility of gapped bilayer graphene. arXiv:1004.5556, 2010.

  21. [21]

    Wallace, P. R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634.

    Article  CAS  Google Scholar 

  22. [22]

    Jiang, Z.; Henriksen, E. A.; Tung, L. C.; Wang, Y. J.; Schwartz, M. E.; Han, M. Y.; Kim, P.; Stormer, H. L. Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 2007, 98, 197403.

    Article  CAS  Google Scholar 

  23. [23]

    Sadowski, M. L.; Martinez, G.; Potemski, M.; Berger, C.; de Heer, W. A. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 2006, 97, 266405.

    Article  CAS  Google Scholar 

  24. [24]

    Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. Self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 2007, 104, 18392–18397.

    Article  CAS  Google Scholar 

  25. [25]

    Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.

    Article  CAS  Google Scholar 

  26. [26]

    Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.

    Article  CAS  Google Scholar 

  27. [27]

    Misu, A.; Mendez, E. E.; Dresselhaus, M. S. Near-infrared reflectivity of graphite under hydrostatic pressure. I. Experiment. J. Phys. Soc. Jap. 1979, 47, 199–207.

    Article  CAS  Google Scholar 

  28. [28]

    Borghia, G; Polinib, M.; Asgaric, R.; MacDonald, A. H. Fermi velocity enhancement in monolayer and bilayer graphene. Solid State Commun. 2009, 149, 1117–1122.

    Article  Google Scholar 

  29. [29]

    Cheianov, V. V.; Fal’ko, V. I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 2006, 74, 041403.

    Article  Google Scholar 

  30. [30]

    Cheianov, V. V.; Fal’ko, V.; Altshuler, B. L. The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 2007, 315, 1252–1255.

    Article  CAS  Google Scholar 

  31. [31]

    Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.

    Article  CAS  Google Scholar 

  32. [32]

    Park, C. H.; Yang, L.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys. 2008, 4, 213–217.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michael Fuhrer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, S., Fuhrer, M. Massless and massive particle-in-a-box states in single- and bi-layer graphene. Nano Res. 4, 385–392 (2011).

Download citation


  • Fabry-Perot
  • interference
  • ballistic
  • density of states
  • phase-coherent