Nano Research

, Volume 4, Issue 4, pp 385–392 | Cite as

Massless and massive particle-in-a-box states in single- and bi-layer graphene

Research Article

Abstract

Electron transport through short, phase-coherent metal-graphene-metal devices occurs via resonant transmission through particle-in-a-box-like states defined by the atomically-sharp metal leads. We study the spectrum of particle-in-a-box states for single- and bi-layer graphene, corresponding to massless and massive two-dimensional (2-D) fermions. The density of states D as a function of particle number n shows the expected relationships D(n) ∼ n1/2 for massless 2-D fermions (electrons in single-layer graphene) and D(n) ∼ constant for massive 2-D fermions (electrons in bi-layer graphene). The single parameters of the massless and massive dispersion relations are found, namely Fermi velocity υF = 1.1 × 106 m/s and effective mass m* = 0.032 me, where me is the electron mass, in excellent agreement with theoretical expectations.

Keywords

Fabry-Perot interference ballistic density of states phase-coherent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U. C.; Bao, W.; Lau, C. N. Phase-coherent transport in graphene quantum billiards. Science 2007, 317, 1530–1533.CrossRefGoogle Scholar
  2. [2]
    Lundeberg, M. B.; Folk, J. A. Spin-resolved quantum interference in graphene. Nat. Phys. 2009, 5, 894–897.CrossRefGoogle Scholar
  3. [3]
    Young, A. F.; Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 2009, 5, 222–226.CrossRefGoogle Scholar
  4. [4]
    Novoselov, K. S.; Geim, A. K.; S.; Morozov, V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  5. [5]
    Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefGoogle Scholar
  6. [6]
    Koshino, M.; Ando, T. Transport in bilayer graphene: Calculations within a self-consistent Born approximation. Phys. Rev. B 2006, 73, 245403.CrossRefGoogle Scholar
  7. [7]
    Novoselov, K. S.; McCann, E.; Morozov, S. V.; Fal’ko, V. I.; Katsnelson, M. I.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. K. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2006, 2, 177–180.CrossRefGoogle Scholar
  8. [8]
    McCann, E.; Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 2006, 96, 086805.CrossRefGoogle Scholar
  9. [9]
    Nilson, J.; Castro Neto, A. H.; Guinea, F.; Peres, N. M. R. Electronic properties of graphene multilayers. Phys. Rev. Lett. 2006, 97, 266801.CrossRefGoogle Scholar
  10. [10]
    Partoens, B.; Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 2006, 74, 075404.CrossRefGoogle Scholar
  11. [11]
    Das Sarma, S.; Hwang, E. H.; Tse, W. K. Many-body interaction effects in doped and undoped graphene: Fermi liquid versus non-Fermi liquid. Phys. Rev. B 2007, 75, 121406.Google Scholar
  12. [12]
    Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.CrossRefGoogle Scholar
  13. [13]
    Henriksen, E. A.; Jiang, Z.; Tung, L. C.; Schwartz, M. E.; Takita, M.; Wang, Y. J.; Kim, P.; Stormer, H. L. Cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 2008, 100, 087403.Google Scholar
  14. [14]
    Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.CrossRefGoogle Scholar
  15. [15]
    Toy, W. W.; Dresselhaus, M. S.; Dresselhaus, G. Minority carriers in graphite and the H-point magnetoreflection spectra. Phys. Rev. B 1977, 15, 4077–4090.CrossRefGoogle Scholar
  16. [16]
    Dresselhaus, M. S.; Dresselhaus, G. Intercalation compound of graphite. Adv. Phys. 1981, 30, 139–326.CrossRefGoogle Scholar
  17. [17]
    Liang, W.; Bockrath, M.; Bozovic, D.; Hafner, J. H.; Tinkham, M.; Park, H. Fabry-Perot interference in a nanotube electron waveguide. Nature 2001, 411, 665–669.CrossRefGoogle Scholar
  18. [18]
    Cao, J.; Wang, Q.; Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.CrossRefGoogle Scholar
  19. [19]
    Henriksen, E. A.; Eisenstein, J. P. Measurement of the electronic compressibility of bilayer graphene. Phys. Rev. B 2010, 82, 041412.CrossRefGoogle Scholar
  20. [20]
    Young, A. F.; Dean, C. R.; Meric, I.; Sorgenfrei, S.; Ren, H.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P. Electronic compressibility of gapped bilayer graphene. arXiv:1004.5556, 2010.Google Scholar
  21. [21]
    Wallace, P. R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634.CrossRefGoogle Scholar
  22. [22]
    Jiang, Z.; Henriksen, E. A.; Tung, L. C.; Wang, Y. J.; Schwartz, M. E.; Han, M. Y.; Kim, P.; Stormer, H. L. Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 2007, 98, 197403.CrossRefGoogle Scholar
  23. [23]
    Sadowski, M. L.; Martinez, G.; Potemski, M.; Berger, C.; de Heer, W. A. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 2006, 97, 266405.CrossRefGoogle Scholar
  24. [24]
    Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. Self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 2007, 104, 18392–18397.CrossRefGoogle Scholar
  25. [25]
    Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.CrossRefGoogle Scholar
  26. [26]
    Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.CrossRefGoogle Scholar
  27. [27]
    Misu, A.; Mendez, E. E.; Dresselhaus, M. S. Near-infrared reflectivity of graphite under hydrostatic pressure. I. Experiment. J. Phys. Soc. Jap. 1979, 47, 199–207.CrossRefGoogle Scholar
  28. [28]
    Borghia, G; Polinib, M.; Asgaric, R.; MacDonald, A. H. Fermi velocity enhancement in monolayer and bilayer graphene. Solid State Commun. 2009, 149, 1117–1122.CrossRefGoogle Scholar
  29. [29]
    Cheianov, V. V.; Fal’ko, V. I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 2006, 74, 041403.CrossRefGoogle Scholar
  30. [30]
    Cheianov, V. V.; Fal’ko, V.; Altshuler, B. L. The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 2007, 315, 1252–1255.CrossRefGoogle Scholar
  31. [31]
    Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.CrossRefGoogle Scholar
  32. [32]
    Park, C. H.; Yang, L.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys. 2008, 4, 213–217.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics and Center for Nanophysics and Advanced MaterialsUniversity of MarylandCollege ParkUSA

Personalised recommendations