Nano Research

, Volume 3, Issue 6, pp 412–422

Carbon nanotube-textured sand for controlling bioavailability of contaminated sediments

Open Access
Research Article

DOI: 10.1007/s12274-010-1046-9

Cite this article as:
Ma, X., Anand, D., Zhang, X. et al. Nano Res. (2010) 3: 412. doi:10.1007/s12274-010-1046-9


Sand particles textured with multi-walled carbon nanotubes (MWCNTs) can efficiently control the mobility and bioavailability of contaminants found in aquatic sediments. Adsorption measurements for a wide variety of aquatic contaminants (chlorinated hydrocarbons) on MWCNT-textured sand showed orders of magnitude increase in their sorption coefficients compared to traditional materials (sand) when used for physically separating contaminated sediments from overlying water. Molecular dynamics simulations performed on model experimental systems emphasize that the hydrophobic interactions of the MWCNT surfaces play a crucial role in driving the water molecules away, promoting such enhanced contaminant uptake. The MWCNT-textured sand significantly reduced the migration of contaminants from sediments to overlying water and possesses suitable parameters needed for contaminant sequestration and sediment remediation technologies. The single step and scalable procedure described here for synthesizing robust MWCNT-textured sand surfaces will provide important improvements in the field of remediation/aquatic environment restoration technologies.


Multi-walled carbon nanotube (MWCNT)-textured sand in situ capping capping amendments chlorinated compounds 
Download to read the full article text

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringSouthern Illinois University CarbondaleCarbondaleUSA
  2. 2.Department of PhysicsSouthern Illinois University CarbondaleCarbondaleUSA

Personalised recommendations