Nano Research

, Volume 3, Issue 6, pp 412–422

Carbon nanotube-textured sand for controlling bioavailability of contaminated sediments

Open Access
Research Article


Sand particles textured with multi-walled carbon nanotubes (MWCNTs) can efficiently control the mobility and bioavailability of contaminants found in aquatic sediments. Adsorption measurements for a wide variety of aquatic contaminants (chlorinated hydrocarbons) on MWCNT-textured sand showed orders of magnitude increase in their sorption coefficients compared to traditional materials (sand) when used for physically separating contaminated sediments from overlying water. Molecular dynamics simulations performed on model experimental systems emphasize that the hydrophobic interactions of the MWCNT surfaces play a crucial role in driving the water molecules away, promoting such enhanced contaminant uptake. The MWCNT-textured sand significantly reduced the migration of contaminants from sediments to overlying water and possesses suitable parameters needed for contaminant sequestration and sediment remediation technologies. The single step and scalable procedure described here for synthesizing robust MWCNT-textured sand surfaces will provide important improvements in the field of remediation/aquatic environment restoration technologies.


Multi-walled carbon nanotube (MWCNT)-textured sand in situ capping capping amendments chlorinated compounds 


  1. [1]
    The Incidence and Severity of Sediment Contamination in Surface Water of the United States: National Sediment Quality Survey, 2nd ed.; United States Environmental Protection Agency (EPA): Washington, DC, 2004.Google Scholar
  2. [2]
    Gustavson, K. E.; Burton, G. A.; Francingues, N. R. Jr.; Reible, D. D.; Vorhees, D. J.; Wolfe, J. R. Evaluating the effectiveness of contaminated-sediment dredging. Environ. Sci. Technol. 2008, 42, 5042–5047.CrossRefPubMedGoogle Scholar
  3. [3]
    Sediment Dredging at Superfund Megasites: Assessing the Effectiveness; National Research Council. National Academies Press: Washington, DC, 2007.Google Scholar
  4. [4]
    Zeman, A. J. Subaqueous capping of very soft contaminated sediments. Can. Geotech. J. 1994, 31, 570–577.CrossRefGoogle Scholar
  5. [5]
    Simpson, S. L.; Pryor, I. D.; Mewburn, B. R.; Batley, G. E.; Jolley, D. Considerations for capping metal-contaminated sediments in dynamic estuarine environments. Environ. Sci. Technol. 2002, 36, 3772–3778.CrossRefPubMedGoogle Scholar
  6. [6]
    Knox, A. S.; Paller, M. H.; Reible, D. D.; Ma, X.; Petrisor, I. G. Sequestering agents for active caps-remediation of metals and organics. Soil Sediment Contam. 2008, 17, 615–632.Google Scholar
  7. [7]
    Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Topics in Applied Physics 80, Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Eds.; Springer: New York, 2001.Google Scholar
  8. [8]
    Endo, M.; Strano, M. S.; Ajayan. P. M. Potential applications of carbon nanotubes. Carbon Nanotubes. Top. Appl. Phys. 2008, 111, 13–61.CrossRefGoogle Scholar
  9. [9]
    Migone, A. D.; Talapatra, S. In Encyclopedia of Nanoscience and Nanotechnology. Nalwa, H. S., Ed.; American Scientific Publishers: Los Angeles, 2004; vol. 4, pp 749–767.Google Scholar
  10. [10]
    Srivastava, A. A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M. Carbon nanotube filters. Nat. Mater. 2004, 3, 610–614.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Upadhyayula V. K.; Deng, S.; Mitchell, M. C.; Smith, G. B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 2009, 408, 1–13.CrossRefPubMedGoogle Scholar
  12. [12]
    Li, Y. H.; Zhao, Y. M.; Hu, W. B.; Ahmad, I.; Zhu, Y. Q.; Peng, X. J.; Luan, Z. K. Carbon nanotubes-The promising adsorbent in wastewater treatment. J. Phys: Conf. Ser. 2007, 61, 698–702.CrossRefADSGoogle Scholar
  13. [13]
    Long, R. Q.; Yang, R. T. Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 2001, 123, 2058–2059.CrossRefGoogle Scholar
  14. [14]
    Rao, G. P.; Lu, C.; Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 2007, 58, 224–231.CrossRefGoogle Scholar
  15. [15]
    Chen, C.; Wang, X. Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 2006, 45, 9144–9149.CrossRefGoogle Scholar
  16. [16]
    Li, X.; Zhang, X.; Ci, L.; Shah, R.; Wolfe, C.; Kar, S.; Talapatra, S.; Ajayan, P. M. Air-assisted growth of ultra-long carbon nanotube bundles, Nanotechnology 2008, 19, 455609.CrossRefADSGoogle Scholar
  17. [17]
    Hilding, J. M.; Grulke, E. A. Heat of adsorption of butane on multiwalled carbon nanotubes. J. Phys. Chem. B 2004, 108, 13688–13695.CrossRefGoogle Scholar
  18. [18]
    Mackie, E. B.; Wolfson, R. A.; Arnold, L. M.; Lafdi, K.; Migone, A. D. Adsorption studies of methane films on catalytic carbon nanotubes and on carbon filaments. Langmuir 1997, 13, 7197–7201.CrossRefGoogle Scholar
  19. [19]
    Stan, G.; Bojan, M. J.; Curtarolo, S.; Gatica, S. M.; Cole, M. W. Uptake of gases in bundles of carbon nanotubes. Phys. Rev. B 2000, 62, 2173–2180.CrossRefADSGoogle Scholar
  20. [20]
    Peterson, E. J.; Huang, Q.; Weber, W. J. Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ. Health Persp. 2008, 116, 496–500.Google Scholar
  21. [21]
    Zhu, H.; Han, J.; Xiao, J. Q.; Yan, J. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monitor. 2008, 10, 713–717.CrossRefGoogle Scholar
  22. [22]
    Chen, W.; Duan, L.; Zhu, D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 2007, 41, 8295–8300.CrossRefPubMedGoogle Scholar
  23. [23]
    Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.MATHCrossRefADSGoogle Scholar
  24. [24]
    Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Metz, K. M. Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.CrossRefGoogle Scholar
  25. [25]
    Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271.CrossRefGoogle Scholar
  26. [26]
    Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic solids. J. Am. Chem. Soc. 1996, 118, 11225–11236.CrossRefGoogle Scholar
  27. [27]
    Jorgensen, W. L. OPLS all-atom parameters for organic molecules, ions, and nucleic acids 5/01. Yale University, New Haven, CT. Personal communication.Google Scholar
  28. [28]
    Ismail, A. E.; Grest, G. S.; Heine, D. R.; Stevens, M. J.; Tsige, M. Interfacial structure and dynamics of siloxane systems: PDMS/vapor and PDMS/water. Macromolecules, 2009, 42, 3186–3194.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringSouthern Illinois University CarbondaleCarbondaleUSA
  2. 2.Department of PhysicsSouthern Illinois University CarbondaleCarbondaleUSA

Personalised recommendations