Nano Research

, Volume 3, Issue 5, pp 379–386 | Cite as

Bi2S3 nanostructures: A new photocatalyst

Open Access
Research Article


Uniform colloidal Bi2S3 nanodots and nanorods with different sizes have been prepared in a controllable manner via a hot injection method. X-ray diffraction (XRD) results show that the resulting nanocrystals have an orthorhombic structure. Both the diameter and length of the nanorods increase with increasing concentration of the precursors. All of the prepared Bi2S3 nanostructures show high efficiency in the photodegradation of rhodamine B, especially in the case of small sized nanodots—which is possibly due to their high surface area. The dynamics of the photocatalysis is also discussed.


Bi2S3 nanostructures hot injection photocatalyst 


  1. [1]
    Prevot, A. B.; Basso, A.; Baiocchi, C.; Pazzi, M.; Marcí, G.; Augugliaro, V.; Palmisano, L.; Pramauro, E. Analytical control of photocatalytic treatments: Degradation of a sulfonated azo dye. Anal. Bioanal. Chem. 2004, 378, 214–220.CrossRefGoogle Scholar
  2. [2]
    Ameta, S. C.; Chaudhary, R.; Ameta, R.; Vardia, J. Photocatalysis: A promising technology for wastewater treatment. J. Indian Chem. Soc. 2003, 80, 257–265.Google Scholar
  3. [3]
    Friesen, D. A.; Headley, J. V.; Langford, C. H. The photooxidative degradation of N-methylpyrrolidinone in the presence of Cs3PW12O40 and TiO2 colloid photocatalysts. Environ. Sci. Technol. 1999, 33, 3193–3198.CrossRefGoogle Scholar
  4. [4]
    Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4084.CrossRefPubMedGoogle Scholar
  5. [5]
    Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.CrossRefPubMedGoogle Scholar
  6. [6]
    Bian, Z. F.; Zhu, J.; Wang, S. H.; Cao, Y.; Qian, X. F.; Li, H. X. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. J. Phys. Chem. C 2008, 112, 6258–6262.CrossRefGoogle Scholar
  7. [7]
    Zaleska, A.; Sobczak, J. W.; Grabowska, E.; Hupka, J. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal. B 2008, 78, 92–100.CrossRefGoogle Scholar
  8. [8]
    Bessekhouad, Y.; Robert, D.; Weber, J. V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2, and ZnMn2O4/TiO2 heterojunctions. Catal. Today 2005, 101, 315–321.CrossRefGoogle Scholar
  9. [9]
    Gombac, V.; Rogatis, L. D.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.; Balducci, G.; Fornasiero, P.; Tondello, E.; Graziani, M. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem. Phys. 2007, 339, 111–123.CrossRefADSGoogle Scholar
  10. [10]
    Zhang, F.; Wong, S. S. Controlled synthesis of semiconducting metal sulfide nanowires. Chem. Mater. 2009, 21, 4541–4554.CrossRefGoogle Scholar
  11. [11]
    Muruganandham, M.; Kusumoto, Y. Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst. J. Phys. Chem. C 2009, 113, 16144–16150.CrossRefGoogle Scholar
  12. [12]
    Liu, X. W.; Fang, Z.; Zhang, X. J.; Zhang, W.; Wei, X. W.; Geng, B. Y. Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts. Cryst. Growth Des. 2009, 9, 197–202.CrossRefGoogle Scholar
  13. [13]
    Vogel, R.; Hoyer, P.; Weller, H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 1994, 98, 3183–3188.CrossRefGoogle Scholar
  14. [14]
    Bao, H.; Li, C. M.; Cui, X. Q.; Gan, Y.; Song, Q. L.; Guo, J. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode. Small 2008, 4, 1125–1129.CrossRefPubMedGoogle Scholar
  15. [15]
    Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Cademartiri, L.; Scotognella, F.; O’Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482–1486.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Yao, K.; Gong, W. W.; Hu, Y. F.; Liang, X. L.; Chen, Q.; Peng, L. M. Individual Bi2S3 nanowire-based room-temperature H2 sensor. J. Phys. Chem. C 2008, 112, 8721–8724.CrossRefGoogle Scholar
  18. [18]
    Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J. J.; Li, M. H.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.CrossRefGoogle Scholar
  19. [19]
    Bao, H. F.; Li, C. M.; Cui, X. Q.; Song, Q. L.; Yang, H. B.; Guo, J. Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology 2008, 19, 335302.CrossRefGoogle Scholar
  20. [20]
    Albuquerque, R.; Neves, M. C.; Mendonca, M. H.; Trindade, T.; Monteiro, O. C. Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization process. Colloids Surf. A 2008, 328, 107–113.CrossRefGoogle Scholar
  21. [21]
    Stavila, V.; Whitmire, K. H.; Rusakova, I. Synthesis of Bi2S3 nanostructures from bismuth(III) thiourea and thiosemicarbazide complexes. Chem. Mater. 2009, 21, 5456–5465.CrossRefGoogle Scholar
  22. [22]
    Wang, D. S.; Hao, C. H.; Zheng, W.; Ma, X. L.; Chu, D. R.; Peng, Q.; Li, Y. D. Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Res. 2009, 2, 130–134.CrossRefGoogle Scholar
  23. [23]
    Fan, D. B.; Thomas, P. J.; O’Brien, P. Synthesis and assembly of Bi2S3 nanoparticles at the water-toluene interface. Chem. Phys. Lett. 2008, 465, 110–114.CrossRefADSGoogle Scholar
  24. [24]
    Ye, C. H.; Meng, G. W.; Jiang, Z.; Wang, Y. H.; Wang, G. Z.; Zhang, L. D. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J. Am. Chem. Soc. 2002, 124, 15180–15181.CrossRefPubMedGoogle Scholar
  25. [25]
    Quan, Z.; Yang, J.; Yang, P. P.; Wang, Z. L.; Li, C. X.; Lin, J. Facile synthesis and characterization of single crystalline Bi2S3 with various morphologies. Cryst. Growth Des. 2008, 8, 200–207.CrossRefGoogle Scholar
  26. [26]
    Li, L. S.; Cao, R. G.; Wang, Z. J.; Li, J. J.; Qi, L. M. Template synthesis of hierarchical Bi2E3 (E = S, Se, Te) core-shell microspheres and their electrochemical and photoresponsive properties. J. Phys. Chem. C 2009, 113, 18075–18081.CrossRefGoogle Scholar
  27. [27]
    Zhang, Y. L.; Zhu, J.; Song, X.; Zhong, X. H. Controlling the synthesis of CoO nanocrystals with various morphologies. J. Phys. Chem. C 2008, 112, 5322–5327.CrossRefGoogle Scholar
  28. [28]
    Zhong, X. H.; Feng, Y. Y.; Zhang, Y. L.; Lieberwirth, I.; Knoll, W. Nonhydrolytic alcoholysis route to morphologycontrolled ZnO nanocrystals. Small 2007, 3, 1194–1199.CrossRefPubMedGoogle Scholar
  29. [29]
    Cademartiri, L.; Malakooti, R.; Brien, P. G. O.; Migliori, A.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Large-scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew. Chem. Int. Ed. 2008, 47, 3814–3817.CrossRefGoogle Scholar
  30. [30]
    Malakooti, R.; Cademartiri, L.; Akçakir, Y.; Petrov, S.; Migliori, A.; Ozin, G. A. Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible films. Adv. Mater. 2006, 18, 2189–2194.CrossRefGoogle Scholar
  31. [31]
    Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y. D. A synthetic method for transition-metal chalcogenide nanocrystals. Chem. Eur. J. 2009, 15, 1870–1875.CrossRefGoogle Scholar
  32. [32]
    Wang, Y.; Chen, J.; Wang, P.; Chen, L.; Chen, Y. B.; Wu, L. M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J. Phys. Chem. C 2009, 113, 16009–16014.CrossRefGoogle Scholar
  33. [33]
    Lou, W. J.; Chen, M.; Wang, X. B.; Liu, W. M. Novel single-source precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment. Chem. Mater. 2007, 19, 872–878.CrossRefGoogle Scholar
  34. [34]
    Kim, D.; Shimpi, P.; Gao, P. X. Zigzag zinc blende ZnS nanowires: Large scale synthesis and their structure evolution induced by electron irradiation. Nano Res. 2009, 2, 966–974.CrossRefGoogle Scholar
  35. [35]
    Tsunoyama, H.; Ichikuni, N.; Tsukuda, T. Microfluidic synthesis and catalytic application of PVP-stabilized, ?1 nm gold clusters. Langmuir 2008, 24, 11327–11330.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, Department of ChemistryEast China University of Science and TechnologyShanghaiChina

Personalised recommendations