Nano Research

, Volume 3, Issue 5, pp 356–362 | Cite as

Controllable nanostructural transitions in grafted nanoparticle-block copolymer composites

Open Access
Research Article

Abstract

We report a theoretical investigation of self-assembled nanostructures of polymer-grafted nanoparticles in a block copolymer and explore underlying physical mechanisms by employing the self-consistent field method. By varying the particle concentration or the chain length and density of the grafted polymer, one can not only create various ordered morphologies (e.g., lamellar or hexagonally packed patterns) but also control the positions of nanoparticles either at the copolymer interfaces or in the center of one-block domains. The nanostructural transitions we here report are mainly attributed to the competition between entropy and enthalpy.

Keywords

Block copolymer nanocomposite pattern formation self-assembly self-consistent field theory 

References

  1. [1]
    Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 2006, 314, 1107–1110.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Bockstaller, M. R.; Thomas, E. L. Proximity effects in self-organized binary particle-block copolymer blends. Phys. Rev. Lett. 2004, 93, 166106.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Liff, S. M.; Kumar, N.; McKinley, G. H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 2007, 6, 76–83.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008, 320, 1748–1752.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Bockstaller, M. R.; Mickiewicz, R. A.; Thomas, E. L. Block copolymer nanocomposites: perspectives for tailored functional materials. Adv. Mater. 2005, 17, 1331–1349.CrossRefGoogle Scholar
  6. [6]
    Kim, B. J.; Chiu, J. J.; Yi, G. R.; Pine, D. J.; Kramer, E. J. Nanoparticle-induced phase transitions in diblock-copolymer films. Adv. Mater. 2005, 17, 2618–2622.CrossRefGoogle Scholar
  7. [7]
    Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J. Control of nanoparticle location in block copolymers. J. Am. Chem. Soc. 2005, 127, 5036–5037.CrossRefPubMedGoogle Scholar
  8. [8]
    Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J. Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template. Macromolecules 2006, 39, 4108–4114.CrossRefADSGoogle Scholar
  9. [9]
    Kalra, V.; Lee, J.; Lee, J. H.; Lee, S. G.; Marquez, M.; Wiesner, U.; Joo, Y. L. Controlling nanoparticle location via confined assembly in electrospun block copolymer nanofibers. Small 2008, 4, 2067–2073.CrossRefPubMedGoogle Scholar
  10. [10]
    Fu, S. Y.; Feng, X. Q.; Lauke, B; Mai, Y. W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos. Part B: Eng. 2008, 39, 933–961.CrossRefGoogle Scholar
  11. [11]
    Pryamitsyn, V.; Ganesan, V. Strong segregation theory of block copolymer-nanoparticle composites. Macromolecules 2006, 39, 8499–8510.CrossRefADSGoogle Scholar
  12. [12]
    Wang, Q.; Nealey, P. F.; de Pablo, J. J. Behavior of single nanoparticle/homopolymer chain in ordered structures of diblock copolymers. J. Chem. Phys. 2003, 118, 11278–11285.CrossRefADSGoogle Scholar
  13. [13]
    Huh, J.; Ginzburg, V. V.; Balazs, A. C. Thermodynamic behavior of particle/diblock copolymer mixtures: Simulation and theory. Macromolecules 2000, 33, 8085–8096.CrossRefADSGoogle Scholar
  14. [14]
    Schultz, A. J.; Hall, C. K.; Genzer, J. Computer simulation of block copolymer/nanoparticle composites. Macromolecules 2005, 38, 3007–3016.CrossRefADSGoogle Scholar
  15. [15]
    Matsen, M. W. The standard Gaussian model for block copolymer melts. J. Phys.: Condens. Matter 2002, 14, R21–R47.CrossRefADSGoogle Scholar
  16. [16]
    Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys. Rev. Lett. 1999, 83, 4317–4320.CrossRefADSGoogle Scholar
  17. [17]
    Guo, Z. J.; Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. Discovering ordered phases of block copolymers: New results from a generic Fourier-space approach. Phys. Rev. Lett. 2008, 101, 028301.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Xu, G. K.; Li, Y.; Li, B.; Feng, X. Q.; Gao, H. J. Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matter 2009, 5, 3977–3983.CrossRefGoogle Scholar
  19. [19]
    Xu, G. K.; Feng, X. Q.; Li, Y. Self-assembled nanostructures of homopolymer and diblock copolymer blends in a selective solvent. J. Phys. Chem. B 2010, 114, 1257–1263.CrossRefPubMedGoogle Scholar
  20. [20]
    Sides, S. W.; Kim, B. J.; Kramer, E. J.; Fredrickson, G. H. Hybrid particle-field simulations of polymer nanocomposites. Phys. Rev. Lett. 2006, 96, 250601.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Predicting the mesophases of copolymer-nanoparticle composites. Science 2001, 292, 2469–2472.CrossRefPubMedGoogle Scholar
  22. [22]
    Lee, J. Y.; Shou, Z. Y.; Balazs, A. C. Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces. Phys. Rev. Lett. 2003, 91, 136103.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Kim, J. U.; Matsen, M. W. Positioning Janus nanoparticles in block copolymer scaffolds. Phys. Rev. Lett. 2009, 102, 078303.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Spontak, R. J.; Shankar, R.; Bowman, M. K.; Krishnan, A. S.; Hamersky, M. W.; Samseth, J.; Bockstaller, M. R.; Rasmussen, K. Ø. Selectivity- and size-induced segregation of molecular and nanoscale species in microphase-ordered triblock copolymers. Nano Lett. 2006, 6, 2115–2120.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Reister, E.; Fredrickson, G. H. Phase behavior of a blend of polymer-tethered nanoparticles with diblock copolymers. J. Chem. Phys. 2005, 123, 214903.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Patel, D. M.; Fredrickson, G. H. Quenched and annealed disorder in randomly grafted copolymer melts. Phys. Rev. E 2003, 68, 051802.CrossRefADSGoogle Scholar
  27. [27]
    Tzeremes, G.; Rasmussen, K. Ø.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers. Phys. Rev. E 2002, 65, 041806.CrossRefADSGoogle Scholar
  28. [28]
    Sides, S. W.; Fredrickson, G. H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure. Polymer 2003, 44, 5859–5866.CrossRefGoogle Scholar
  29. [29]
    Akcora, P.; Liu, H. J.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V.; Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354–359.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Kim, J. U.; O’shaughnessy, B. Morphology selection of nanoparticle dispersions by polymer media. Phys. Rev. Lett. 2002, 89, 238301.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Biomechanics and Medical Engineering, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations