Shape-controlled CuCl crystallite catalysts for aniline coupling


The catalytic activity of crystallites depends mainly upon the arrangement of surface atoms, the number of dangling bonds, and defect site distribution on different crystal planes. Here, we report the shape-controlled synthesis of CuCl crystallites, including tetrahedra, face-centered-etched tetrahedra, tripod dendrites, and tetrapods. These different morphologies of CuCl crystallites expose different proportions of {111} and {110} crystal planes, and materials with a preponderance of {111} crystal planes have better catalytic activity in aniline coupling than those with more {110} planes.


  1. [1]

    Burda, C.; Chen, X.; Narayanan, R.; El-Sayed M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

    Article  CAS  PubMed  Google Scholar 

  2. [2]

    Zhou, K. B.; Wang, X.; Sun, X. M.; Peng Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from welldefined reactive crystal planes. J. Catal. 2005, 229, 206–212.

    Article  CAS  Google Scholar 

  3. [3]

    Zhou, K. B.; Xu, R.; Sun, X. M.; Chen, H. D.; Tian, Q.; Shen, D. X.; Li, Y. D. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods. Catal. Lett. 2005, 101, 169–173.

    Article  CAS  Google Scholar 

  4. [4]

    Zhou, K. B.; Wang, R. P.; Xu, B. Q.; Li, Y. D. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 2006, 17, 3939–3943.

    Article  CAS  ADS  Google Scholar 

  5. [5]

    Zhang, Y. W.; Grass, M. E.; Habas, S. E.; Tao, F.; Zhang, T. F.; Yang, P. D.; Somorjai, G. A. One-step polyol synthesis and Langmuir-Blodgett monolayer formation of size-tunable monodisperse rhodium nanocrystals with catalytically active (111) surface structures. J. Am. Chem. Soc. 2007, 111, 12243–12253.

    CAS  Google Scholar 

  6. [6]

    Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. [7]

    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with highindex facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. [8]

    Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 2008, 47, 2884–2887.

    Article  CAS  Google Scholar 

  9. [9]

    Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

    Article  CAS  PubMed  Google Scholar 

  10. [10]

    Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

    Article  CAS  Google Scholar 

  11. [11]

    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solutionbased synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  CAS  Google Scholar 

  12. [12]

    Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. [13]

    Rousselet, G.; Capdevienlle, P.; Maumy, M. Copper(I)-induced addition of amines to unactivated nitriles: The first general one-step synthesis of alkyl amidines. Tetrahedron Lett. 1993, 34, 6395–6398.

    Article  CAS  Google Scholar 

  14. [14]

    Cao, Y.; Hu, J. C.; Yang, P.; Dai, W. L.; Fan, K. N. CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethylcarbonate. Chem. Commun. 2003, 908–909.

  15. [15]

    He, C.; Chen, C.; Chen, J.; Liu, C.; Liu, W.; Liu, Q.; Lei, A. W. Aryl halide tolerated electrophilic amination of arylboronic acids with N-chloroamides catalyzed by CuCl at room temperature. Angew. Chem. Int. Ed. 2008, 47, 6414–6417.

    Article  CAS  Google Scholar 

  16. [16]

    Li, Q.; Shao, M. W.; Yu, G. H.; Wu, J.; Li, F. Q.; Qian, Y. T. A solvent-reduction approach to tetrapod-like copper(I) chloride crystallites. J. Mater. Chem. 2003, 13, 424–427.

    Article  CAS  Google Scholar 

  17. [17]

    Xie, T.; Li, S. A.; Peng, Q.; Li, Y. D. Monodisperse BaF2 nanocrystals: Phases, size transitions, and self-assembly. Angew. Chem. Int. Ed. 2009, 48, 196–200.

    Article  CAS  Google Scholar 

  18. [18]

    Xie, T.; Li, S. A.; Wang, W. B.; Peng, Q.; Li, Y. D. Nucleation and growth of BaF(x)Cl(2-x) nanorods. Chem. Eur. J. 2008, 14, 9730–9735.

    Article  CAS  Google Scholar 

  19. [19]

    Li, S. A.; Xie, T.; Peng, Q.; Li, Y. D. Nucleation and growth of CeF3 and NaCeF4 nanocrystals. Chem. Eur. J. 2009, 15, 2512–2517.

    Article  CAS  Google Scholar 

  20. [20]

    Lu, W. C.; Xi, C. J. CuCl-catalyzed aerobic oxidative reaction of primary aromatic amines. Tetrahedron Lett. 2008, 49, 4011–4015.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yadong Li.

Additional information

This article is published with open access at

Electronic supplementary material

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Xie, T., Gong, M., Niu, Z. et al. Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Res. 3, 174–179 (2010).

Download citation


  • CuCl
  • aniline coupling
  • catalytic activity
  • crystal plane effects