Soluble graphene through edge-selective functionalization

Abstract

Thermally expanded graphite was functionalized with 4-bromophenyl addends using the in situ diazonium formation procedure, and after mild sonication treatment in N,N′-dimethylformamide, thin graphene layers were exfoliated from the bulk graphite. These chemically-assisted exfoliated graphene (CEG) sheets had higher solubility than pristine graphene without any stabilizer additive. More than 70% of these soluble flakes had less than 5 layers. Energy filtered transmission electron microscopy (EFTEM) elemental mapping provided evidence of the edge-selective diazonium functionalization with graphene. A majority of the Br signals came from the edges of the CEG indicating that the basal planes were not highly functionalized. The CEG was also characterized by X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy.

References

  1. [1]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. [2]

    Ruoff, R. Graphene: Calling all chemists. Nat. Nanotechnol. 2008, 3, 10–11.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. [3]

    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphene oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  4. [4]

    Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

    Article  CAS  PubMed  Google Scholar 

  5. [5]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. [6]

    Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. [7]

    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  CAS  PubMed  Google Scholar 

  8. [8]

    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

    Article  CAS  PubMed  Google Scholar 

  9. [9]

    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. [10]

    Jia, X. T.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H. B.; Hsieh, Y. P.; Reina, A.; Kong, J.; Terrones, M.; Dresselhaus, M. S. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. [11]

    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. [12]

    Robinson, J. A.; Puls, C. P.; Staley, N. E.; Stitt, J. P.; Fanton, M. A.; Emtsev, K. V.; Seyller, T.; Liu, Y. Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 2009, 9, 964–968.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. [13]

    Ni, Z. H.; Chen, W.; Fan, X. F.; Kuo, J. L.; Yu, T.; Wee, A. T. S.; Shen, Z. X. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B. 2008, 77, 115416.

    Article  ADS  Google Scholar 

  14. [14]

    Rohrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2008, 92, 201918.

    Article  ADS  Google Scholar 

  15. [15]

    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactantwrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

    Article  CAS  PubMed  Google Scholar 

  16. [16]

    Teweldebrhan, D.; Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 013101.

    Article  ADS  Google Scholar 

  17. [17]

    Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett. 2009, 9, 1058–1063.

    Article  CAS  ADS  Google Scholar 

  18. [18]

    Girit, C. O.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. [19]

    Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 2009, 102, 015501.

    Article  PubMed  ADS  Google Scholar 

  20. [20]

    Barnard, A. S.; Snook, I. K. Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 2008, 128, 094707.

    Article  PubMed  ADS  Google Scholar 

  21. [21]

    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.

    Article  CAS  PubMed  Google Scholar 

  22. [22]

    Gupta, A. K.; Russin, T. J.; Gutierrez, H. R.; Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 2009, 3, 45–52.

    Article  CAS  PubMed  Google Scholar 

  23. [23]

    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  CAS  PubMed  Google Scholar 

  24. [24]

    Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Coleman, J. N. Measurement of multicomponent solubility parameters for graphene facilities solvent discovery. Langmuir, in press, DOI: 10.1021/la903188a.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James M. Tour.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Sun, Z., Kohama, S., Zhang, Z. et al. Soluble graphene through edge-selective functionalization. Nano Res. 3, 117–125 (2010). https://doi.org/10.1007/s12274-010-1016-2

Download citation

Keywords

  • Edge-selective functionalization
  • graphene
  • energy filtered transmission electron microscopy (EFTEM)
  • chemically-assisted exfoliation