Nano Research

, Volume 4, Issue 4, pp 370–375 | Cite as

Fe3O4 octahedral colloidal crystals

  • L-r Meng
  • Weimeng Chen
  • Yiwei Tan
  • Lin Zou
  • Chinping Chen
  • Heping Zhou
  • Qing Peng
  • Yadong Li
Research Article


We present a facile and controllable method for the large-scale fabrication of highly-ordered octahedral Fe3O4 colloidal “single crystals” without the assistance of a substrate. Oleic acid is used to reduce the solubility of the nano-building blocks in colloidal solution and to induce a “crystallization” process. Our colloidal crystals are of multimicron size and show typical crystallographic characteristics. They have a very robust structure and can serve as a novel ordered magnetic mesoporous material with a relatively narrow pore size distribution. The sample possesses an extremely high Verwey transition temperature (TV) of 100 K and a high saturation magnetization (MS) of 86 emu/g at 5 K based on its good crystallinity, as well as the interparticle dipolar interaction behavior arising from its unique structure. Electrochemical measurements have demonstrated the excellent capacity of the mesoporous colloidal crystals when used in lithium-ion batteries.


Fe3O4 self-assembly superlattice magnetic mesoporous material electrode material Verwey transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_91_MOESM1_ESM.pdf (1.7 mb)
Supplementary material, approximately 340 KB.


  1. [1]
    Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.CrossRefGoogle Scholar
  2. [2]
    Collier, C. P.; Vossmeyer, T.; Heath, J. R. Nanocrystal superlattices. Ann. Rev. Phys. Chem. 1998, 49, 371–404.CrossRefGoogle Scholar
  3. [3]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 2000, 30, 545–610.CrossRefGoogle Scholar
  4. [4]
    Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1998, 10, 13–30.CrossRefGoogle Scholar
  5. [5]
    Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420–424.CrossRefGoogle Scholar
  6. [6]
    Zhuang, Z. B.; Peng, Q.; Wang, X.; Li, Y. D. Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 8174–8177.CrossRefGoogle Scholar
  7. [7]
    Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289–296.CrossRefGoogle Scholar
  8. [8]
    Shibu, E. S.; Muhammed, M. A. H.; Kimura, K.; Pradeep, T. Fluorescent Superlattices of gold nanoparticles: A new class of functional materials. Nano Res. 2009, 2, 220–234.CrossRefGoogle Scholar
  9. [9]
    Pileni, M. P. Self-assembly of inorganic nanocrystals: Fabrication and collective intrinsic properties. Acc. Chem. Res. 2007, 40, 685–693.CrossRefGoogle Scholar
  10. [10]
    Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther, A. R.; Yang, P. D. Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett. 2008, 8, 4033–4038.CrossRefGoogle Scholar
  11. [11]
    Desvaux, C.; Amiens, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B. Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles. Nat. Mater. 2005, 4, 750–753.CrossRefGoogle Scholar
  12. [12]
    Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed. 2010, 49, 1362–1395.Google Scholar
  13. [13]
    Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J. H.; Bae, C. J.; Park, J. G.; Hyeon, T. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17, 429–434.CrossRefGoogle Scholar
  14. [14]
    Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc. 2010, 132, 6131–6144.CrossRefGoogle Scholar
  15. [15]
    Lu, W. G.; Liu, Q. S.; Sun, Z. Y.; He, J. B.; Ezeolu, C.; Fang, J. Y. Super crystal structures of octahedral c-In2O3 nanocrystals. J. Am. Chem. Soc. 2008, 130, 6983–6991.CrossRefGoogle Scholar
  16. [16]
    Fan, H. Y.; Leve, E.; Gabaldon, J.; Wright, A.; Haddad, R. E.; Brinker, C. J. Ordered two- and three-dimensional arrays self-assembled from water-soluble nanocrystal-micelles. Adv. Mater. 2005, 17, 2587–2590.CrossRefGoogle Scholar
  17. [17]
    Yang, Y.; Liu, S. M.; Kimura, K. Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angew. Chem. Int. Ed. 2006, 45, 5662–5665.CrossRefGoogle Scholar
  18. [18]
    Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 2002, 12, 653–664.CrossRefGoogle Scholar
  19. [19]
    Zheng, N. F.; Fan, J.; Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550–6551.CrossRefGoogle Scholar
  20. [20]
    Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650–6653.CrossRefGoogle Scholar
  21. [21]
    Zhuang, J. Q.; Wu, H. M.; Yang, Y. A.; Cao, Y. C. Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc. 2007, 129, 14166–14167.CrossRefGoogle Scholar
  22. [22]
    Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.CrossRefGoogle Scholar
  23. [23]
    Burton, W. K.; Cabrera, N.; Frank, F. C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. London, Ser. A 1951, 243, 299–358.CrossRefGoogle Scholar
  24. [24]
    Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.CrossRefGoogle Scholar
  25. [25]
    Verwey E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327–328.CrossRefGoogle Scholar
  26. [26]
    Kong, D. S.; Chen, C. P.; He, L. Collective magnetization flux closure state with circular array of single-domained nanomagnets: Magnetization reversal and chirality control. J. Appl. Phys. 2008, 103, 114312.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • L-r Meng
    • 1
  • Weimeng Chen
    • 2
  • Yiwei Tan
    • 1
  • Lin Zou
    • 1
  • Chinping Chen
    • 2
  • Heping Zhou
    • 1
  • Qing Peng
    • 1
  • Yadong Li
    • 1
  1. 1.State Key Laboratory of New Ceramics and Fine Processing, Department of Chemistry and Department of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of PhysicsPeking UniversityBeijingChina

Personalised recommendations