Skip to main content

Photoluminescence of CdSe nanowires grown with and without metal catalyst

Abstract

We present temperature and power dependent photoluminescence measurements on CdSe nanowires synthesized via vapor-phase with and without the use of a metal catalyst. Nanowires produced without a catalyst can be optimized to yield higher quantum efficiency, and narrower and spatially uniform emission, when compared to the catalyst-assisted ones. Emission at energies lower than the band-edge is also found in both cases. By combining spatially-resolved photoluminescence and electron microscopy on the same nanowires, we show that catalyst-free nanowires exhibit a low-energy peak with sharp phonon replica, whereas for catalyst-assisted nanowires low-energy emission is linked to the presence of nanostructures with extended morphological defects.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Pauzauskie, P. J.; Yang, P. Nanowire photonics. Mater. Today 2006, 9, 36–45.

    Article  CAS  Google Scholar 

  2. [2]

    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

    Article  CAS  Google Scholar 

  3. [3]

    Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: What’s next? Nano Lett. 2010, 10, 1529–1536.

    Article  CAS  Google Scholar 

  4. [4]

    Gur, I.; Fromer, N. A.; Chen, C. -P.; Kanaras, A. G.; Alivisatos, A. P. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 2007, 7, 409–414.

    Article  CAS  Google Scholar 

  5. [5]

    Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  CAS  Google Scholar 

  6. [6]

    Huang, Y.; Duan, X.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.

    Article  CAS  Google Scholar 

  7. [7]

    Shan, C. X.; Liu, Z.; Hark, S. K. Photoluminescence polarization in individual CdSe nanowires. Phys. Rev. B 2006, 74, 153402.

    Article  Google Scholar 

  8. [8]

    Wang, P.; Abrusci, A.; Wong, H. M. P.; Svensson, M.; Andersson, M. R.; Greenham, N. C. Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett. 2006, 6, 1789–1793.

    Article  CAS  Google Scholar 

  9. [9]

    Madelung, O.; Schulz, M.; Weiss, H. Landolt-Bornstein Tables; Springer: Berlin, 1982; Vols. 17a and 17b.

    Google Scholar 

  10. [10]

    Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

    Article  CAS  Google Scholar 

  11. [11]

    Ma, C.; Wang, Z. L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—A step towards nanomanufacturing. Adv. Mater. 2005, 17, 2635–2639.

    Article  CAS  Google Scholar 

  12. [12]

    Colli, A.; Fasoli, A.; Hofmann, S.; Ducati, C.; Robertson, J.; Ferrari, A. C. Deterministic shape-selective synthesis of nanowires, nanoribbons and nanosaws by steady-state vapourtransport. Nanotechnology 2006, 17, 1046–1051.

    Article  CAS  Google Scholar 

  13. [13]

    Fasoli, A.; Pisana, S.; Colli, A.; Carbone, L.; Manna, L.; Ferrari, A. C. Vapor-phase nucleation of individual CdSe nanostructures from shape-engineered nanocrystal seeds. Appl. Phys. Lett. 2008, 92, 023106.

    Article  Google Scholar 

  14. [14]

    Kuno, M. An overview of solution-based semiconductor nanowires: Synthesis and optical studies. Phys. Chem. Chem. Phys. 2008, 10, 620–639.

    Article  CAS  Google Scholar 

  15. [15]

    Xiang, B.; Zhang, H. Z.; Li, G. H.; Yang, F. H.; Su, F. H.; Wang, R. M.; Xu, J.; Lu, G. W.; Sun, X. C.; Zhao, Q.; Yu, D. P. Green-light-emitting ZnSe nanowires fabricated via vapor phase growth. Appl. Phys. Lett. 2003, 82, 3330–3332.

    Article  CAS  Google Scholar 

  16. [16]

    Zhang, X. T.; Ip, K. M.; Li, Q.; Hark, S. K. Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2005, 86, 203114.

    Article  Google Scholar 

  17. [17]

    Zhang, B. P.; Binh, N. T.; Segawa, Y.; Kashiwaba, Y.; Haga, K. Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11{ie14-1}0) substrates. Appl. Phys. Lett. 2004, 84, 586–588.

    Article  CAS  Google Scholar 

  18. [18]

    Colli, A.; Hofmann, S.; Ferrari, A. C.; Martelli, F.; Rubini, S.; Ducati, C.; Franciosi, A.; Robertson, J. Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy. Nanotechnology 2005, 16, S139–S142.

    Article  CAS  Google Scholar 

  19. [19]

    Zhou, X. T.; Kim, P. S. G.; Shama, T. K.; Lee, S. T. Fabrication, morphology, structure, and photoluminescence of ZnS and CdS nanoribbons. J. Appl. Phys. 2005, 98, 024312.

    Article  Google Scholar 

  20. [20]

    Wang, Z. Q.; Gong, J. F.; Duan, J. H.; Huang, H. B.; Yang, S. G.; Zhao, X. N.; Zhang, R.; Du, Y. W. Direct synthesis and characterization of CdS nanobelts. Appl. Phys. Lett. 2006, 89, 033102.

    Article  Google Scholar 

  21. [21]

    Li, Q.; Brown, M. A.; Hemminger, J. C.; Penner, R. M. Luminescent polycrystalline cadmium selenide nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration. Chem. Mater. 2006, 18, 3432–3441.

    Article  CAS  Google Scholar 

  22. [22]

    Chèze, C.; Geelhaar, L.; Brandt, O.; Weber, W. M.; Riechert, H.; Münch, S.; Rothemund, R.; Reitzenstein, S.; Forchel, A.; Kehagias, T.; Komninou, P.; Dimitrakopulos, G. P.; Karakostas, T. Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Res. 2010, 3, 528–536.

    Article  Google Scholar 

  23. [23]

    Venugopal, R.; Lin, P. I.; Liu, C. C.; Chen, Y. T. Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. J. Am. Chem. Soc. 2005, 127, 11262–11268.

    Article  CAS  Google Scholar 

  24. [24]

    Protasenko, V. V.; Hull, K. L.; Kuno, M. Disorder-induced optical heterogeneity in single CdSe nanowires. Adv. Mater. 2005, 17, 2942–2949.

    Article  CAS  Google Scholar 

  25. [25]

    Philipose, U.; Xu, T.; Yang, S.; Sun, P.; Ruda, H. E.; Wang, Y. Q.; Kavanagh, K. L. Enhancement of band edge luminescence in ZnSe nanowires. J. Appl. Phys. 2006, 100, 084316.

    Article  Google Scholar 

  26. [26]

    Lan, A.; Giblin, J.; Protasenko, V.; Kuno, M. Excitation and photoluminescence polarization anisotropy of single CdSe nanowires. Appl. Phys. Lett. 2008, 92, 183110.

    Article  Google Scholar 

  27. [27]

    Liu, Y. -H.; Wayman, V. L.; Gibbons, P. C.; Loomis, R. A.; Buhro, W. E. Origin of high photoluminescence efficiencies in CdSe quantum belts. Nano Lett. 2010, 10, 352–357.

    Article  CAS  Google Scholar 

  28. [28]

    Glennon, J. J.; Tang, R.; Buhro, W. E.; Loomis, R. A.; Bussian, D. A.; Htoon, H.; Klimov V. I. Exciton localization and migration in individual CdSe quantum wires at low temperatures. Phys. Rev. B 2009, 80 081303(R).

    Article  Google Scholar 

  29. [29]

    Giblin, J.; Syed, M.; Banning, M. T.; Kuno, M.; Hartland, G. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging, ACS Nano 2010, 4, 358–364.

    Article  CAS  Google Scholar 

  30. [30]

    Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–920.

    Article  CAS  Google Scholar 

  31. [31]

    Borgstrom, M. T.; Zwiller, V.; Muller, E.; Imamoglu, A. Optically bright quantum dots in single nanowires. Nano Lett. 2005, 5, 1439–1443.

    Article  Google Scholar 

  32. [32]

    Philipose, U.; Yang, S.; Xu, T.; Ruda, H. E. Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett. 2007, 90, 063103.

    Article  Google Scholar 

  33. [33]

    Wagner R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  CAS  Google Scholar 

  34. [34]

    Wu, Y. Yang, P. Direct observation of Vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

    Article  CAS  Google Scholar 

  35. [35]

    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 2006, 96, 096105.

    Article  CAS  Google Scholar 

  36. [36]

    Colli, A.; Fasoli, A.; Beecher, P.; Servati, P.; Pisana, S.; Fu, Y.; Flewitt, A. J.; Milne, W. I.; Robertson, J.; Ducati, C.; De Franceschi, S.; Hofmann, S.; Ferrari, A. C. Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. J. Appl. Phys. 2007, 102, 034302.

    Article  Google Scholar 

  37. [37]

    Kamins, T. I.; Williams, R. S.; Basile, D. P.; Hesjedal, T.; Harris, J. S. Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 2001, 89, 1008–1016.

    Article  CAS  Google Scholar 

  38. [38]

    Hofmann, S.; Ducati, C.; Neill, R. J.; Piscanec, S.; Ferrari, A. C.; Geng, J.; Dunin-Borkowski, R. E.; Robertson, J. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2003, 94, 6005–6012.

    Article  CAS  Google Scholar 

  39. [39]

    Dick, K. A.; Deppert, K.; Martensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005, 5, 761–764.

    Article  CAS  Google Scholar 

  40. [40]

    Colli, A.; Hofmann, S.; Ferrari, A. C.; Ducati, C.; Martelli, F.; Rubini, S.; Cabrini, S.; Franciosi, A.; Robertson, J. Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2005, 86, 153103.

    Article  Google Scholar 

  41. [41]

    Wang, Y.; Schmidt, V.; Senz, S.; Gosele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.

    Article  CAS  Google Scholar 

  42. [42]

    Carlino, E. Martelli, F. Rubini, S. Franciosi, A. Catalyst incorporation in ZnSe nanowires. Phil. Mag. Lett. 2006, 86, 261–266.

    Article  CAS  Google Scholar 

  43. [43]

    Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E.; Lauhon, L. J. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.

    Article  CAS  Google Scholar 

  44. [44]

    Oh, S. H.; van Benthem, K.; Molina, S. I.; Borisevich, A. Y.; Luo, W.; Werner, P.; Zakharov, N. D.; Kumar, D.; Pantelides, S. T.; Pennycook, S. J. Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett. 2008, 8, 1016–1019.

    Article  CAS  Google Scholar 

  45. [45]

    Kim, B. -S.; Koo, T. W.; Lee, J. H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D. Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 2009, 9, 864–869.

    Article  CAS  Google Scholar 

  46. [46]

    Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Bello, I.; Lee, S. T. Si nanowires grown from silicon oxide. Chem. Phys. Lett. 1999, 299, 237–242.

    Article  CAS  Google Scholar 

  47. [47]

    Mandl, B.; Stangl, J.; Martensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L. S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-free epitaxial growth of InAs nanowires. Nano Lett. 2006, 6, 1817–1821.

    Article  CAS  Google Scholar 

  48. [48]

    Stach, E. A.; Pauzauskie, P. J.; Kuykendall, T.; Goldberger, J.; He, R.; Yang, P. Watching GaN nanowires grow. Nano Lett. 2003, 3, 867–869.

    Article  CAS  Google Scholar 

  49. [49]

    Novotny, C. J.; Yu, P. K. L. Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2005, 87, 203111.

    Article  Google Scholar 

  50. [50]

    Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9–24.

    Article  Google Scholar 

  51. [51]

    Fasoli, A.; Colli, A.; Kudera, S.; Manna, L.; Hofmann, S.; Ducati, C.; Robertson, J.; Ferrari, A. C. Catalytic and seeded shape-selective synthesis of II-IV semiconductor nanowires. Physica E 2007, 37, 138–141.

    Article  CAS  Google Scholar 

  52. [52]

    Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

    Article  CAS  Google Scholar 

  53. [53]

    Perna, G.; Capozzi, V.; Ambrico, M. Structural properties and photoluminescence study of CdSe/Si epilayers deposited by laser ablation. J. Appl. Phys. 1998, 83, 3337–3344.

    Article  CAS  Google Scholar 

  54. [54]

    Yu, P. Y.; Hermann, C. Excitation spectroscopies of impurities in CdSe. Phys. Rev. B 1981, 23, 4097–4106.

    Article  CAS  Google Scholar 

  55. [55]

    Silberstein, R. P., Tomkiewicz, M. Characterization of polycrystalline electrodeposited CdSe photoelectrodes using photoluminescence spectroscopy. J. Appl. Phys. 1983, 54, 5428–5435.

    Article  CAS  Google Scholar 

  56. [56]

    Arora, A. K.; Ramdas, A. K. Resonance Raman scattering from defects in CdSe. Phys. Rev. B 1987, 35, 4345–4350.

    Article  CAS  Google Scholar 

  57. [57]

    Rosen, D. L.; Li, Q. X.; Alfano, R. R. Native defects in undoped semi-insulating CdSe studied by photoluminescence and absorption. Phys. Rev. B 1985, 31, 2396–2403.

    Article  CAS  Google Scholar 

  58. [58]

    Kokubun, Y.; Watanabe, H.; Wada, M. Photoluminescence of CdSe single crystals. Jap. J. Appl. Phys. 1974, 13, 1393–1398.

    Article  CAS  Google Scholar 

  59. [59]

    Jager-Waldau, R.; Stucheli, N.; Braun, M.; Steiner, M. L.; Bucher, E.; Tenne, R.; Flaisher, H.; Kerfin, W.; Braun, R.; Koschel, W. Thin-film CdSe: Photoluminescence and electronic measurements. J. Appl. Phys. 1988, 64, 2601–2606.

    Article  Google Scholar 

  60. [60]

    Ma, C.; Ding, Y.; Moore, D.; Wang, X.; Wang, Z. L. Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 2004, 126, 708–709.

    Article  CAS  Google Scholar 

  61. [61]

    Henry, C. H.; Nassau, K.; Shiever, J. W. Optical studies of shallow acceptors in CdS and CdSe. Phys. Rev. B 1971, 4, 2453–2463.

    Article  Google Scholar 

  62. [62]

    Tamargo, M. C. II–IV Semiconductor Materials and their Applications; Taylor and Francis: New York, 2002.

    Google Scholar 

  63. [63]

    Klingshirn, C. F. Semiconductor Optics; Springer: Berlin, 1997.

    Google Scholar 

  64. [64]

    Bogardus, E. H.; Bebb, H. B. Bound-exciton, free-exciton, band-acceptor, donor-acceptor and Auger recombination in GaAs. Phys. Rev. 1968, 176, 993–1002.

    Article  CAS  Google Scholar 

  65. [65]

    Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989–8994.

    Article  Google Scholar 

  66. [66]

    Magde, D.; Mahr, H. Exciton-exciton interaction in CdS, CdSe, and ZnO. Phys. Rev. Lett. 1970, 24, 890–893.

    Article  CAS  Google Scholar 

  67. [67]

    Tenne, R.; Jager-Waldau, R.; Lux-Steiner, M.; Bucher, E.; Rioux, J.; Levy-Clement, C. Transport and optical properties of low-resistivity CdSe. Phys. Rev. B 1990, 42, 1763–1772.

    Article  CAS  Google Scholar 

  68. [68]

    Pavesi, L.; Guzzi, M. Photoluminescence of AlxGa1−x As alloys. J. Appl. Phys. 1994, 75, 4779–4842.

    Article  CAS  Google Scholar 

  69. [69]

    Thomas, D. G.; Gershenzon, M.; Trumbore, F. A. Pair spectra and “edge” emission in gallium phosphide. Phys. Rev. 1964, 133, A269–A279.

    Article  Google Scholar 

  70. [70]

    Yu, P. Y. Resonant Raman study of LO+ acoustic phonon modes in CdSe. Solid State Commun. 1976, 19, 1087–1090.

    Article  CAS  Google Scholar 

  71. [71]

    Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer-Verlag: Berlin, 2003.

    Google Scholar 

  72. [72]

    Dean, P. J.; Fitzpatrick, B. J.; Bhargava, R. N. Optical properties of ZnSe doped with Ag and Au. Phys. Rev. B 1982, 26, 2016–2035.

    Article  CAS  Google Scholar 

  73. [73]

    Jarrett, D. N.; Ward, L. Optical properties of discontinuous gold films. J. Phys. D 1976, 9, 1515–1527.

    Article  CAS  Google Scholar 

  74. [74]

    Jiran, E.; Thompson, C. V. Capillary instabilities in thin films. J. Elect. Mater. 1990, 19, 1153–1160.

    Article  CAS  Google Scholar 

  75. [75]

    Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 2005, 1, 48–63.

    Article  CAS  Google Scholar 

  76. [76]

    Zhai, T.; Zhong, H.; Gu, Z.; Peng, A.; Fu, H.; Ma, Y.; Li, Y.; Yao, J. Manipulation of the morphology of ZnSe sub-micron structures using CdSe nanocrystals as the seeds. J. Phys. Chem. C 2007, 111, 2980–2986.

    Article  CAS  Google Scholar 

  77. [77]

    Piscanec, S.; Cantoro, M.; Ferrari, A. C.; Zapien, J. A.; Lifshitz, Y.; Lee, S. T.; Hofmann, S.; Robertson, J. Raman spectroscopy of silicon nanowires. Phys. Rev. B. 2003, 68, 241312.

    Article  Google Scholar 

  78. [78]

    Scheel, H.; Reich, S.; Ferrari, A. C.; Cantoro, M.; Colli, A.; Thomsen, C. Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency. Appl. Phys. Lett. 2006, 88, 233114.

    Article  Google Scholar 

  79. [79]

    Konstantinović, M. J.; Bersier, S.; Wang, X.; Hayne, M.; Lievens, P.; Silverans, R. E.; Moshchalkov, V. V. Raman scattering in cluster-deposited nanogranular silicon films. Phys. Rev. B 2002, 66, 161311(R).

    Google Scholar 

  80. [80]

    Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

    Article  CAS  Google Scholar 

  81. [81]

    Wu, Q.; Grober, R. D.; Gammon, D.; Katzer, D. S. Excitons, biexcitons, and electron-hole plasma in a narrow 2.8-nm GaAs/AlxGa1−x As quantum well. Phys. Rev. B 2000, 62, 13022–13027.

    Article  CAS  Google Scholar 

  82. [82]

    Brunner, K.; Abstreiter, G.; Böhm, G.; Tränkle, G.; Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 1994, 73, 1138–1141.

    Article  CAS  Google Scholar 

  83. [83]

    Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  CAS  Google Scholar 

  84. [84]

    Intonti, F.; Emiliani, V.; Lienau, C.; Elsaesser, T.; Notzel, R.; Ploog, K. H. Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires. J. Microsc. 2001, 202, 193–201.

    Article  CAS  Google Scholar 

  85. [85]

    Han, X.; Kou, L.; Lang, X.; Xia, J.; Wang, N.; Qin, R.; Lu, J.; Xu, J.; Liao, Z.; Zhang, X.; Shan, X.; Song, X.; Gao, J.; Guo, W.; Yu, D. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.

    Article  CAS  Google Scholar 

  86. [86]

    Sköld, N.; Karlsson, L. S.; Larsson, M. W.; Pistol, M. -E.; Seifert, W.; Trägårdh, J.; Samuelson, L. Growth and optical properties of strained GaAs-GaxIn1−x P core-shell nanowires. Nano Lett. 2005, 5, 1943–1947.

    Article  Google Scholar 

  87. [87]

    Jabeen, F.; Rubini, S.; Grillo, V.; Felisari, L.; Martelli, F. Room temperature luminescent InGaAs/GaAs core-shell nanowires. Appl. Phys. Lett. 2008, 93, 083117.

    Article  Google Scholar 

  88. [88]

    Kobayashi, A.; Sankey, O. F.; Dow, J. D. Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO. Phys. Rev. B 1983, 28, 946–956.

    Article  CAS  Google Scholar 

  89. [89]

    Venghaus, H.; Dean, P. J. Shallow-acceptor, donor, free-exciton, and bound-exciton states in high-purity zinc telluride. Phys. Rev. B 1980, 21, 1596–1609.

    Article  CAS  Google Scholar 

  90. [90]

    Kikkawa, J.; Ohno, Y.; Takeda, S. Growth rate of silicon nanowires. Appl. Phys. Lett. 2006, 86, 123109.

    Article  Google Scholar 

  91. [91]

    Johansson, J.; Karlsson, L. S.; Svensson, C. P. T.; Martensson, T.; Wacaser, B. A.; Deppert, K.; Samuelson, L.; Seifert, W. Structural properties of 〈111〉B-oriented III–V nanowires. Nat. Mater. 2006, 5, 574–580.

    Article  CAS  Google Scholar 

  92. [92]

    Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Ferrari.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fasoli, A., Colli, A., Martelli, F. et al. Photoluminescence of CdSe nanowires grown with and without metal catalyst. Nano Res. 4, 343–359 (2011). https://doi.org/10.1007/s12274-010-0089-2

Download citation

Keywords

  • CdSe
  • nanowires
  • photoluminescence